ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancld Unicode version

Theorem ancld 325
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancld.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ancld  |-  ( ph  ->  ( ps  ->  ( ps  /\  ch ) ) )

Proof of Theorem ancld
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( ps  ->  ps ) )
2 ancld.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2jcad 307 1  |-  ( ph  ->  ( ps  ->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mopick2  2125  cgsexg  2795  cgsex2g  2796  cgsex4g  2797  reximdva0m  3462  difsn  3755  preq12b  3796  elres  4978  relssres  4980  fnoprabg  6019  1idprl  7650  1idpru  7651  msqge0  8635  mulge0  8638  fzospliti  10243  algcvga  12189  prmind2  12258  sqrt2irr  12300  grpinveu  13110  metrest  14674  2sqlem10  15212
  Copyright terms: Public domain W3C validator