| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > copsex4g | Unicode version | ||
| Description: An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.) |
| Ref | Expression |
|---|---|
| copsex4g.1 |
|
| Ref | Expression |
|---|---|
| copsex4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 |
. . . . . . 7
| |
| 2 | vex 2766 |
. . . . . . . 8
| |
| 3 | vex 2766 |
. . . . . . . 8
| |
| 4 | 2, 3 | opth 4271 |
. . . . . . 7
|
| 5 | 1, 4 | bitri 184 |
. . . . . 6
|
| 6 | eqcom 2198 |
. . . . . . 7
| |
| 7 | vex 2766 |
. . . . . . . 8
| |
| 8 | vex 2766 |
. . . . . . . 8
| |
| 9 | 7, 8 | opth 4271 |
. . . . . . 7
|
| 10 | 6, 9 | bitri 184 |
. . . . . 6
|
| 11 | 5, 10 | anbi12i 460 |
. . . . 5
|
| 12 | 11 | anbi1i 458 |
. . . 4
|
| 13 | 12 | a1i 9 |
. . 3
|
| 14 | 13 | 4exbidv 1884 |
. 2
|
| 15 | id 19 |
. . 3
| |
| 16 | copsex4g.1 |
. . 3
| |
| 17 | 15, 16 | cgsex4g 2800 |
. 2
|
| 18 | 14, 17 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opbrop 4743 ovi3 6064 dfplpq2 7438 dfmpq2 7439 enq0breq 7520 |
| Copyright terms: Public domain | W3C validator |