Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelab | GIF version |
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
clelab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2152 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | 1 | anbi2i 453 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
3 | 2 | exbii 1593 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
4 | df-clel 2161 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
5 | nfv 1516 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝜑) | |
6 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
7 | nfs1v 1927 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
8 | 6, 7 | nfan 1553 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑) |
9 | eqeq1 2172 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
10 | sbequ12 1759 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
11 | 9, 10 | anbi12d 465 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
12 | 5, 8, 11 | cbvex 1744 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
13 | 3, 4, 12 | 3bitr4i 211 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 [wsb 1750 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: elrabi 2879 |
Copyright terms: Public domain | W3C validator |