| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelab | GIF version | ||
| Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| clelab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2196 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 2 | 1 | anbi2i 457 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
| 3 | 2 | exbii 1631 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
| 4 | df-clel 2205 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 5 | nfv 1554 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝜑) | |
| 6 | nfv 1554 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
| 7 | nfs1v 1970 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 8 | 6, 7 | nfan 1591 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑) |
| 9 | eqeq1 2216 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 10 | sbequ12 1797 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 11 | 9, 10 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
| 12 | 5, 8, 11 | cbvex 1782 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
| 13 | 3, 4, 12 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ∃wex 1518 [wsb 1788 ∈ wcel 2180 {cab 2195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: elrabi 2936 |
| Copyright terms: Public domain | W3C validator |