ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelab GIF version

Theorem clelab 2296
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
clelab (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem clelab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2157 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
21anbi2i 454 . . 3 ((𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑))
32exbii 1598 . 2 (∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑))
4 df-clel 2166 . 2 (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}))
5 nfv 1521 . . 3 𝑦(𝑥 = 𝐴𝜑)
6 nfv 1521 . . . 4 𝑥 𝑦 = 𝐴
7 nfs1v 1932 . . . 4 𝑥[𝑦 / 𝑥]𝜑
86, 7nfan 1558 . . 3 𝑥(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)
9 eqeq1 2177 . . . 4 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
10 sbequ12 1764 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
119, 10anbi12d 470 . . 3 (𝑥 = 𝑦 → ((𝑥 = 𝐴𝜑) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)))
125, 8, 11cbvex 1749 . 2 (∃𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑))
133, 4, 123bitr4i 211 1 (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  [wsb 1755  wcel 2141  {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166
This theorem is referenced by:  elrabi  2883
  Copyright terms: Public domain W3C validator