![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelab | GIF version |
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
clelab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2102 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | 1 | anbi2i 450 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
3 | 2 | exbii 1567 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
4 | df-clel 2111 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
5 | nfv 1491 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝜑) | |
6 | nfv 1491 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
7 | nfs1v 1890 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
8 | 6, 7 | nfan 1527 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑) |
9 | eqeq1 2121 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
10 | sbequ12 1727 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
11 | 9, 10 | anbi12d 462 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
12 | 5, 8, 11 | cbvex 1712 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
13 | 3, 4, 12 | 3bitr4i 211 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1314 ∃wex 1451 ∈ wcel 1463 [wsb 1718 {cab 2101 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 |
This theorem is referenced by: elrabi 2806 |
Copyright terms: Public domain | W3C validator |