| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elrabi | Unicode version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| elrabi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clelab 2322 | 
. . 3
 | |
| 2 | eleq1 2259 | 
. . . . . 6
 | |
| 3 | 2 | anbi1d 465 | 
. . . . 5
 | 
| 4 | 3 | simprbda 383 | 
. . . 4
 | 
| 5 | 4 | exlimiv 1612 | 
. . 3
 | 
| 6 | 1, 5 | sylbi 121 | 
. 2
 | 
| 7 | df-rab 2484 | 
. 2
 | |
| 8 | 6, 7 | eleq2s 2291 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rab 2484 | 
| This theorem is referenced by: ordtriexmidlem 4555 ordtri2or2exmidlem 4562 onsucelsucexmidlem 4565 ordsoexmid 4598 reg3exmidlemwe 4615 elfvmptrab1 5656 acexmidlemcase 5917 elovmporab 6123 elovmporab1w 6124 ssfirab 6997 exmidonfinlem 7260 cc4f 7336 genpelvl 7579 genpelvu 7580 suplocsrlempr 7874 nnindnn 7960 sup3exmid 8984 nnind 9006 supinfneg 9669 infsupneg 9670 supminfex 9671 ublbneg 9687 zsupcllemstep 10319 infssuzex 10323 infssuzledc 10324 hashinfuni 10869 bezoutlemsup 12176 uzwodc 12204 nninfctlemfo 12207 lcmgcdlem 12245 phisum 12409 oddennn 12609 evenennn 12610 znnen 12615 ennnfonelemg 12620 rrgval 13818 psrbagf 14224 txdis1cn 14514 reopnap 14782 divcnap 14801 limccl 14895 dvlemap 14916 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 dvcjbr 14944 dvrecap 14949 dveflem 14962 sgmval 15219 0sgm 15221 sgmf 15222 sgmnncl 15224 dvdsppwf1o 15225 sgmppw 15228 | 
| Copyright terms: Public domain | W3C validator |