| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | Unicode version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2331 |
. . 3
| |
| 2 | eleq1 2268 |
. . . . . 6
| |
| 3 | 2 | anbi1d 465 |
. . . . 5
|
| 4 | 3 | simprbda 383 |
. . . 4
|
| 5 | 4 | exlimiv 1621 |
. . 3
|
| 6 | 1, 5 | sylbi 121 |
. 2
|
| 7 | df-rab 2493 |
. 2
| |
| 8 | 6, 7 | eleq2s 2300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-rab 2493 |
| This theorem is referenced by: ordtriexmidlem 4568 ordtri2or2exmidlem 4575 onsucelsucexmidlem 4578 ordsoexmid 4611 reg3exmidlemwe 4628 elfvmptrab1 5676 acexmidlemcase 5941 elovmporab 6148 elovmporab1w 6149 ssfirab 7035 exmidonfinlem 7303 cc4f 7383 genpelvl 7627 genpelvu 7628 suplocsrlempr 7922 nnindnn 8008 sup3exmid 9032 nnind 9054 supinfneg 9718 infsupneg 9719 supminfex 9720 ublbneg 9736 zsupcllemstep 10374 infssuzex 10378 infssuzledc 10379 hashinfuni 10924 bezoutlemsup 12363 uzwodc 12391 nninfctlemfo 12394 lcmgcdlem 12432 phisum 12596 oddennn 12796 evenennn 12797 znnen 12802 ennnfonelemg 12807 rrgval 14057 psrbagf 14465 txdis1cn 14783 reopnap 15051 divcnap 15070 limccl 15164 dvlemap 15185 dvaddxxbr 15206 dvmulxxbr 15207 dvcoapbr 15212 dvcjbr 15213 dvrecap 15218 dveflem 15231 sgmval 15488 0sgm 15490 sgmf 15491 sgmnncl 15493 dvdsppwf1o 15494 sgmppw 15497 |
| Copyright terms: Public domain | W3C validator |