![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrabi | Unicode version |
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
Ref | Expression |
---|---|
elrabi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelab 2319 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eleq1 2256 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | anbi1d 465 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simprbda 383 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | exlimiv 1609 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | sylbi 121 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-rab 2481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eleq2s 2288 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-rab 2481 |
This theorem is referenced by: ordtriexmidlem 4552 ordtri2or2exmidlem 4559 onsucelsucexmidlem 4562 ordsoexmid 4595 reg3exmidlemwe 4612 elfvmptrab1 5653 acexmidlemcase 5914 elovmporab 6120 elovmporab1w 6121 ssfirab 6992 exmidonfinlem 7255 cc4f 7331 genpelvl 7574 genpelvu 7575 suplocsrlempr 7869 nnindnn 7955 sup3exmid 8978 nnind 9000 supinfneg 9663 infsupneg 9664 supminfex 9665 ublbneg 9681 hashinfuni 10851 zsupcllemstep 12085 infssuzex 12089 infssuzledc 12090 bezoutlemsup 12149 uzwodc 12177 nninfctlemfo 12180 lcmgcdlem 12218 phisum 12381 oddennn 12552 evenennn 12553 znnen 12558 ennnfonelemg 12563 rrgval 13761 psrbagf 14167 txdis1cn 14457 reopnap 14725 divcnap 14744 limccl 14838 dvlemap 14859 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvrecap 14892 dveflem 14905 |
Copyright terms: Public domain | W3C validator |