| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | Unicode version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2355 |
. . 3
| |
| 2 | eleq1 2292 |
. . . . . 6
| |
| 3 | 2 | anbi1d 465 |
. . . . 5
|
| 4 | 3 | simprbda 383 |
. . . 4
|
| 5 | 4 | exlimiv 1644 |
. . 3
|
| 6 | 1, 5 | sylbi 121 |
. 2
|
| 7 | df-rab 2517 |
. 2
| |
| 8 | 6, 7 | eleq2s 2324 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-rab 2517 |
| This theorem is referenced by: ordtriexmidlem 4611 ordtri2or2exmidlem 4618 onsucelsucexmidlem 4621 ordsoexmid 4654 reg3exmidlemwe 4671 elfvmptrab1 5729 acexmidlemcase 5996 elovmporab 6205 elovmporab1w 6206 ssfirab 7098 exmidonfinlem 7371 cc4f 7455 genpelvl 7699 genpelvu 7700 suplocsrlempr 7994 nnindnn 8080 sup3exmid 9104 nnind 9126 supinfneg 9790 infsupneg 9791 supminfex 9792 ublbneg 9808 zsupcllemstep 10449 infssuzex 10453 infssuzledc 10454 hashinfuni 10999 bezoutlemsup 12530 uzwodc 12558 nninfctlemfo 12561 lcmgcdlem 12599 phisum 12763 oddennn 12963 evenennn 12964 znnen 12969 ennnfonelemg 12974 rrgval 14226 psrbagf 14634 txdis1cn 14952 reopnap 15220 divcnap 15239 limccl 15333 dvlemap 15354 dvaddxxbr 15375 dvmulxxbr 15376 dvcoapbr 15381 dvcjbr 15382 dvrecap 15387 dveflem 15400 sgmval 15657 0sgm 15659 sgmf 15660 sgmnncl 15662 dvdsppwf1o 15663 sgmppw 15666 uhgrss 15875 usgredg2v 16022 |
| Copyright terms: Public domain | W3C validator |