| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabi | Unicode version | ||
| Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelab 2322 |
. . 3
| |
| 2 | eleq1 2259 |
. . . . . 6
| |
| 3 | 2 | anbi1d 465 |
. . . . 5
|
| 4 | 3 | simprbda 383 |
. . . 4
|
| 5 | 4 | exlimiv 1612 |
. . 3
|
| 6 | 1, 5 | sylbi 121 |
. 2
|
| 7 | df-rab 2484 |
. 2
| |
| 8 | 6, 7 | eleq2s 2291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rab 2484 |
| This theorem is referenced by: ordtriexmidlem 4556 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 ordsoexmid 4599 reg3exmidlemwe 4616 elfvmptrab1 5659 acexmidlemcase 5920 elovmporab 6127 elovmporab1w 6128 ssfirab 7006 exmidonfinlem 7272 cc4f 7352 genpelvl 7596 genpelvu 7597 suplocsrlempr 7891 nnindnn 7977 sup3exmid 9001 nnind 9023 supinfneg 9686 infsupneg 9687 supminfex 9688 ublbneg 9704 zsupcllemstep 10336 infssuzex 10340 infssuzledc 10341 hashinfuni 10886 bezoutlemsup 12201 uzwodc 12229 nninfctlemfo 12232 lcmgcdlem 12270 phisum 12434 oddennn 12634 evenennn 12635 znnen 12640 ennnfonelemg 12645 rrgval 13894 psrbagf 14300 txdis1cn 14598 reopnap 14866 divcnap 14885 limccl 14979 dvlemap 15000 dvaddxxbr 15021 dvmulxxbr 15022 dvcoapbr 15027 dvcjbr 15028 dvrecap 15033 dveflem 15046 sgmval 15303 0sgm 15305 sgmf 15306 sgmnncl 15308 dvdsppwf1o 15309 sgmppw 15312 |
| Copyright terms: Public domain | W3C validator |