| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb2 | Unicode version | ||
| Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2183). (Contributed by Jim Kingdon, 22-Nov-2018.) |
| Ref | Expression |
|---|---|
| clelsb2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. . 3
| |
| 2 | 1 | sbco2 1992 |
. 2
|
| 3 | nfv 1550 |
. . . 4
| |
| 4 | eleq2 2268 |
. . . 4
| |
| 5 | 3, 4 | sbie 1813 |
. . 3
|
| 6 | 5 | sbbii 1787 |
. 2
|
| 7 | nfv 1550 |
. . 3
| |
| 8 | eleq2 2268 |
. . 3
| |
| 9 | 7, 8 | sbie 1813 |
. 2
|
| 10 | 2, 6, 9 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: peano1 4641 peano2 4642 |
| Copyright terms: Public domain | W3C validator |