ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb2 Unicode version

Theorem clelsb2 2310
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2183). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem clelsb2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . 3  |-  F/ x  A  e.  w
21sbco2 1992 . 2  |-  ( [ y  /  x ] [ x  /  w ] A  e.  w  <->  [ y  /  w ] A  e.  w )
3 nfv 1550 . . . 4  |-  F/ w  A  e.  x
4 eleq2 2268 . . . 4  |-  ( w  =  x  ->  ( A  e.  w  <->  A  e.  x ) )
53, 4sbie 1813 . . 3  |-  ( [ x  /  w ] A  e.  w  <->  A  e.  x )
65sbbii 1787 . 2  |-  ( [ y  /  x ] [ x  /  w ] A  e.  w  <->  [ y  /  x ] A  e.  x )
7 nfv 1550 . . 3  |-  F/ w  A  e.  y
8 eleq2 2268 . . 3  |-  ( w  =  y  ->  ( A  e.  w  <->  A  e.  y ) )
97, 8sbie 1813 . 2  |-  ( [ y  /  w ] A  e.  w  <->  A  e.  y )
102, 6, 93bitr3i 210 1  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1784    e. wcel 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200
This theorem is referenced by:  peano1  4641  peano2  4642
  Copyright terms: Public domain W3C validator