ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb2 Unicode version

Theorem clelsb2 2299
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2172). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem clelsb2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . 3  |-  F/ x  A  e.  w
21sbco2 1981 . 2  |-  ( [ y  /  x ] [ x  /  w ] A  e.  w  <->  [ y  /  w ] A  e.  w )
3 nfv 1539 . . . 4  |-  F/ w  A  e.  x
4 eleq2 2257 . . . 4  |-  ( w  =  x  ->  ( A  e.  w  <->  A  e.  x ) )
53, 4sbie 1802 . . 3  |-  ( [ x  /  w ] A  e.  w  <->  A  e.  x )
65sbbii 1776 . 2  |-  ( [ y  /  x ] [ x  /  w ] A  e.  w  <->  [ y  /  x ] A  e.  x )
7 nfv 1539 . . 3  |-  F/ w  A  e.  y
8 eleq2 2257 . . 3  |-  ( w  =  y  ->  ( A  e.  w  <->  A  e.  y ) )
97, 8sbie 1802 . 2  |-  ( [ y  /  w ] A  e.  w  <->  A  e.  y )
102, 6, 93bitr3i 210 1  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1773    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189
This theorem is referenced by:  peano1  4626  peano2  4627
  Copyright terms: Public domain W3C validator