| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq2w | Unicode version | ||
| Description: Equality theorem for
product, when the class expressions |
| Ref | Expression |
|---|---|
| prodeq2w |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 2 | ifeq1 3574 |
. . . . . . . . . . . . . . 15
| |
| 3 | 2 | alimi 1478 |
. . . . . . . . . . . . . 14
|
| 4 | alral 2551 |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | syl 14 |
. . . . . . . . . . . . 13
|
| 6 | mpteq12 4128 |
. . . . . . . . . . . . 13
| |
| 7 | 1, 5, 6 | sylancr 414 |
. . . . . . . . . . . 12
|
| 8 | 7 | seqeq3d 10602 |
. . . . . . . . . . 11
|
| 9 | 8 | breq1d 4055 |
. . . . . . . . . 10
|
| 10 | 9 | anbi2d 464 |
. . . . . . . . 9
|
| 11 | 10 | exbidv 1848 |
. . . . . . . 8
|
| 12 | 11 | rexbidv 2507 |
. . . . . . 7
|
| 13 | 7 | seqeq3d 10602 |
. . . . . . . 8
|
| 14 | 13 | breq1d 4055 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | anbi2d 464 |
. . . . 5
|
| 17 | 16 | rexbidv 2507 |
. . . 4
|
| 18 | csbeq2 3117 |
. . . . . . . . . . . 12
| |
| 19 | 18 | ifeq1d 3588 |
. . . . . . . . . . 11
|
| 20 | 19 | mpteq2dv 4136 |
. . . . . . . . . 10
|
| 21 | 20 | seqeq3d 10602 |
. . . . . . . . 9
|
| 22 | 21 | fveq1d 5580 |
. . . . . . . 8
|
| 23 | 22 | eqeq2d 2217 |
. . . . . . 7
|
| 24 | 23 | anbi2d 464 |
. . . . . 6
|
| 25 | 24 | exbidv 1848 |
. . . . 5
|
| 26 | 25 | rexbidv 2507 |
. . . 4
|
| 27 | 17, 26 | orbi12d 795 |
. . 3
|
| 28 | 27 | iotabidv 5255 |
. 2
|
| 29 | df-proddc 11895 |
. 2
| |
| 30 | df-proddc 11895 |
. 2
| |
| 31 | 28, 29, 30 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-seqfrec 10595 df-proddc 11895 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |