| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq2w | Unicode version | ||
| Description: Equality theorem for
product, when the class expressions |
| Ref | Expression |
|---|---|
| prodeq2w |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . . . . . . . . . . 13
| |
| 2 | ifeq1 3564 |
. . . . . . . . . . . . . . 15
| |
| 3 | 2 | alimi 1469 |
. . . . . . . . . . . . . 14
|
| 4 | alral 2542 |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | syl 14 |
. . . . . . . . . . . . 13
|
| 6 | mpteq12 4116 |
. . . . . . . . . . . . 13
| |
| 7 | 1, 5, 6 | sylancr 414 |
. . . . . . . . . . . 12
|
| 8 | 7 | seqeq3d 10547 |
. . . . . . . . . . 11
|
| 9 | 8 | breq1d 4043 |
. . . . . . . . . 10
|
| 10 | 9 | anbi2d 464 |
. . . . . . . . 9
|
| 11 | 10 | exbidv 1839 |
. . . . . . . 8
|
| 12 | 11 | rexbidv 2498 |
. . . . . . 7
|
| 13 | 7 | seqeq3d 10547 |
. . . . . . . 8
|
| 14 | 13 | breq1d 4043 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | anbi2d 464 |
. . . . 5
|
| 17 | 16 | rexbidv 2498 |
. . . 4
|
| 18 | csbeq2 3108 |
. . . . . . . . . . . 12
| |
| 19 | 18 | ifeq1d 3578 |
. . . . . . . . . . 11
|
| 20 | 19 | mpteq2dv 4124 |
. . . . . . . . . 10
|
| 21 | 20 | seqeq3d 10547 |
. . . . . . . . 9
|
| 22 | 21 | fveq1d 5560 |
. . . . . . . 8
|
| 23 | 22 | eqeq2d 2208 |
. . . . . . 7
|
| 24 | 23 | anbi2d 464 |
. . . . . 6
|
| 25 | 24 | exbidv 1839 |
. . . . 5
|
| 26 | 25 | rexbidv 2498 |
. . . 4
|
| 27 | 17, 26 | orbi12d 794 |
. . 3
|
| 28 | 27 | iotabidv 5241 |
. 2
|
| 29 | df-proddc 11716 |
. 2
| |
| 30 | df-proddc 11716 |
. 2
| |
| 31 | 28, 29, 30 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-proddc 11716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |