| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq2w | Unicode version | ||
| Description: Equality theorem for
product, when the class expressions |
| Ref | Expression |
|---|---|
| prodeq2w |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . . . . . . . . . . 13
| |
| 2 | ifeq1 3582 |
. . . . . . . . . . . . . . 15
| |
| 3 | 2 | alimi 1479 |
. . . . . . . . . . . . . 14
|
| 4 | alral 2553 |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | syl 14 |
. . . . . . . . . . . . 13
|
| 6 | mpteq12 4143 |
. . . . . . . . . . . . 13
| |
| 7 | 1, 5, 6 | sylancr 414 |
. . . . . . . . . . . 12
|
| 8 | 7 | seqeq3d 10637 |
. . . . . . . . . . 11
|
| 9 | 8 | breq1d 4069 |
. . . . . . . . . 10
|
| 10 | 9 | anbi2d 464 |
. . . . . . . . 9
|
| 11 | 10 | exbidv 1849 |
. . . . . . . 8
|
| 12 | 11 | rexbidv 2509 |
. . . . . . 7
|
| 13 | 7 | seqeq3d 10637 |
. . . . . . . 8
|
| 14 | 13 | breq1d 4069 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 15 | anbi2d 464 |
. . . . 5
|
| 17 | 16 | rexbidv 2509 |
. . . 4
|
| 18 | csbeq2 3125 |
. . . . . . . . . . . 12
| |
| 19 | 18 | ifeq1d 3597 |
. . . . . . . . . . 11
|
| 20 | 19 | mpteq2dv 4151 |
. . . . . . . . . 10
|
| 21 | 20 | seqeq3d 10637 |
. . . . . . . . 9
|
| 22 | 21 | fveq1d 5601 |
. . . . . . . 8
|
| 23 | 22 | eqeq2d 2219 |
. . . . . . 7
|
| 24 | 23 | anbi2d 464 |
. . . . . 6
|
| 25 | 24 | exbidv 1849 |
. . . . 5
|
| 26 | 25 | rexbidv 2509 |
. . . 4
|
| 27 | 17, 26 | orbi12d 795 |
. . 3
|
| 28 | 27 | iotabidv 5273 |
. 2
|
| 29 | df-proddc 11977 |
. 2
| |
| 30 | df-proddc 11977 |
. 2
| |
| 31 | 28, 29, 30 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-proddc 11977 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |