ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq2w Unicode version

Theorem prodeq2w 11982
Description: Equality theorem for product, when the class expressions 
B and  C are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2w  |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2w
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . . . . . . . . . . 13  |-  ZZ  =  ZZ
2 ifeq1 3582 . . . . . . . . . . . . . . 15  |-  ( B  =  C  ->  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
32alimi 1479 . . . . . . . . . . . . . 14  |-  ( A. k  B  =  C  ->  A. k if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
4 alral 2553 . . . . . . . . . . . . . 14  |-  ( A. k if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 )  ->  A. k  e.  ZZ  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
53, 4syl 14 . . . . . . . . . . . . 13  |-  ( A. k  B  =  C  ->  A. k  e.  ZZ  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
6 mpteq12 4143 . . . . . . . . . . . . 13  |-  ( ( ZZ  =  ZZ  /\  A. k  e.  ZZ  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )  ->  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
71, 5, 6sylancr 414 . . . . . . . . . . . 12  |-  ( A. k  B  =  C  ->  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
87seqeq3d 10637 . . . . . . . . . . 11  |-  ( A. k  B  =  C  ->  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
98breq1d 4069 . . . . . . . . . 10  |-  ( A. k  B  =  C  ->  (  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
109anbi2d 464 . . . . . . . . 9  |-  ( A. k  B  =  C  ->  ( ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
1110exbidv 1849 . . . . . . . 8  |-  ( A. k  B  =  C  ->  ( E. y ( y #  0  /\  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
1211rexbidv 2509 . . . . . . 7  |-  ( A. k  B  =  C  ->  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
137seqeq3d 10637 . . . . . . . 8  |-  ( A. k  B  =  C  ->  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
1413breq1d 4069 . . . . . . 7  |-  ( A. k  B  =  C  ->  (  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
1512, 14anbi12d 473 . . . . . 6  |-  ( A. k  B  =  C  ->  ( ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
1615anbi2d 464 . . . . 5  |-  ( A. k  B  =  C  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
1716rexbidv 2509 . . . 4  |-  ( A. k  B  =  C  ->  ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) ) )
18 csbeq2 3125 . . . . . . . . . . . 12  |-  ( A. k  B  =  C  ->  [_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
)
1918ifeq1d 3597 . . . . . . . . . . 11  |-  ( A. k  B  =  C  ->  if ( n  <_  m ,  [_ ( f `
 n )  / 
k ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
2019mpteq2dv 4151 . . . . . . . . . 10  |-  ( A. k  B  =  C  ->  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) )
2120seqeq3d 10637 . . . . . . . . 9  |-  ( A. k  B  =  C  ->  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) )
2221fveq1d 5601 . . . . . . . 8  |-  ( A. k  B  =  C  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) )
2322eqeq2d 2219 . . . . . . 7  |-  ( A. k  B  =  C  ->  ( x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) )
2423anbi2d 464 . . . . . 6  |-  ( A. k  B  =  C  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
2524exbidv 1849 . . . . 5  |-  ( A. k  B  =  C  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
2625rexbidv 2509 . . . 4  |-  ( A. k  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
2717, 26orbi12d 795 . . 3  |-  ( A. k  B  =  C  ->  ( ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
2827iotabidv 5273 . 2  |-  ( A. k  B  =  C  ->  ( iota x ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) ) )
29 df-proddc 11977 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
30 df-proddc 11977 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
3128, 29, 303eqtr4g 2265 1  |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   [_csb 3101    C_ wss 3174   ifcif 3579   class class class wbr 4059    |-> cmpt 4121   iotacio 5249   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967   0cc0 7960   1c1 7961    x. cmul 7965    <_ cle 8143   # cap 8689   NNcn 9071   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629    ~~> cli 11704   prod_cprod 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-seqfrec 10630  df-proddc 11977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator