Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodeq2w | Unicode version |
Description: Equality theorem for product, when the class expressions and are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq2w |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . . . . . . . . . . 13 | |
2 | ifeq1 3523 | . . . . . . . . . . . . . . 15 | |
3 | 2 | alimi 1443 | . . . . . . . . . . . . . 14 |
4 | alral 2511 | . . . . . . . . . . . . . 14 | |
5 | 3, 4 | syl 14 | . . . . . . . . . . . . 13 |
6 | mpteq12 4065 | . . . . . . . . . . . . 13 | |
7 | 1, 5, 6 | sylancr 411 | . . . . . . . . . . . 12 |
8 | 7 | seqeq3d 10388 | . . . . . . . . . . 11 |
9 | 8 | breq1d 3992 | . . . . . . . . . 10 |
10 | 9 | anbi2d 460 | . . . . . . . . 9 # # |
11 | 10 | exbidv 1813 | . . . . . . . 8 # # |
12 | 11 | rexbidv 2467 | . . . . . . 7 # # |
13 | 7 | seqeq3d 10388 | . . . . . . . 8 |
14 | 13 | breq1d 3992 | . . . . . . 7 |
15 | 12, 14 | anbi12d 465 | . . . . . 6 # # |
16 | 15 | anbi2d 460 | . . . . 5 DECID # DECID # |
17 | 16 | rexbidv 2467 | . . . 4 DECID # DECID # |
18 | csbeq2 3069 | . . . . . . . . . . . 12 | |
19 | 18 | ifeq1d 3537 | . . . . . . . . . . 11 |
20 | 19 | mpteq2dv 4073 | . . . . . . . . . 10 |
21 | 20 | seqeq3d 10388 | . . . . . . . . 9 |
22 | 21 | fveq1d 5488 | . . . . . . . 8 |
23 | 22 | eqeq2d 2177 | . . . . . . 7 |
24 | 23 | anbi2d 460 | . . . . . 6 |
25 | 24 | exbidv 1813 | . . . . 5 |
26 | 25 | rexbidv 2467 | . . . 4 |
27 | 17, 26 | orbi12d 783 | . . 3 DECID # DECID # |
28 | 27 | iotabidv 5174 | . 2 DECID # DECID # |
29 | df-proddc 11492 | . 2 DECID # | |
30 | df-proddc 11492 | . 2 DECID # | |
31 | 28, 29, 30 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 DECID wdc 824 wal 1341 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 csb 3045 wss 3116 cif 3520 class class class wbr 3982 cmpt 4043 cio 5151 wf1o 5187 cfv 5188 (class class class)co 5842 cc0 7753 c1 7754 cmul 7758 cle 7934 # cap 8479 cn 8857 cz 9191 cuz 9466 cfz 9944 cseq 10380 cli 11219 cprod 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 df-proddc 11492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |