Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbcomg | Unicode version |
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) |
Ref | Expression |
---|---|
csbcomg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | elex 2723 | . 2 | |
3 | sbccom 3012 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | sbcel2g 3052 | . . . . . . 7 | |
6 | 5 | sbcbidv 2995 | . . . . . 6 |
7 | 6 | adantl 275 | . . . . 5 |
8 | sbcel2g 3052 | . . . . . . 7 | |
9 | 8 | sbcbidv 2995 | . . . . . 6 |
10 | 9 | adantr 274 | . . . . 5 |
11 | 4, 7, 10 | 3bitr3d 217 | . . . 4 |
12 | sbcel2g 3052 | . . . . 5 | |
13 | 12 | adantr 274 | . . . 4 |
14 | sbcel2g 3052 | . . . . 5 | |
15 | 14 | adantl 275 | . . . 4 |
16 | 11, 13, 15 | 3bitr3d 217 | . . 3 |
17 | 16 | eqrdv 2155 | . 2 |
18 | 1, 2, 17 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cvv 2712 wsbc 2937 csb 3031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 df-csb 3032 |
This theorem is referenced by: ovmpos 5944 |
Copyright terms: Public domain | W3C validator |