| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbcomg | Unicode version | ||
| Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) | 
| Ref | Expression | 
|---|---|
| csbcomg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | elex 2774 | 
. 2
 | |
| 3 | sbccom 3065 | 
. . . . . 6
 | |
| 4 | 3 | a1i 9 | 
. . . . 5
 | 
| 5 | sbcel2g 3105 | 
. . . . . . 7
 | |
| 6 | 5 | sbcbidv 3048 | 
. . . . . 6
 | 
| 7 | 6 | adantl 277 | 
. . . . 5
 | 
| 8 | sbcel2g 3105 | 
. . . . . . 7
 | |
| 9 | 8 | sbcbidv 3048 | 
. . . . . 6
 | 
| 10 | 9 | adantr 276 | 
. . . . 5
 | 
| 11 | 4, 7, 10 | 3bitr3d 218 | 
. . . 4
 | 
| 12 | sbcel2g 3105 | 
. . . . 5
 | |
| 13 | 12 | adantr 276 | 
. . . 4
 | 
| 14 | sbcel2g 3105 | 
. . . . 5
 | |
| 15 | 14 | adantl 277 | 
. . . 4
 | 
| 16 | 11, 13, 15 | 3bitr3d 218 | 
. . 3
 | 
| 17 | 16 | eqrdv 2194 | 
. 2
 | 
| 18 | 1, 2, 17 | syl2an 289 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: ovmpos 6046 | 
| Copyright terms: Public domain | W3C validator |