Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbcomg | Unicode version |
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) |
Ref | Expression |
---|---|
csbcomg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | elex 2741 | . 2 | |
3 | sbccom 3030 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | sbcel2g 3070 | . . . . . . 7 | |
6 | 5 | sbcbidv 3013 | . . . . . 6 |
7 | 6 | adantl 275 | . . . . 5 |
8 | sbcel2g 3070 | . . . . . . 7 | |
9 | 8 | sbcbidv 3013 | . . . . . 6 |
10 | 9 | adantr 274 | . . . . 5 |
11 | 4, 7, 10 | 3bitr3d 217 | . . . 4 |
12 | sbcel2g 3070 | . . . . 5 | |
13 | 12 | adantr 274 | . . . 4 |
14 | sbcel2g 3070 | . . . . 5 | |
15 | 14 | adantl 275 | . . . 4 |
16 | 11, 13, 15 | 3bitr3d 217 | . . 3 |
17 | 16 | eqrdv 2168 | . 2 |
18 | 1, 2, 17 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wsbc 2955 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: ovmpos 5976 |
Copyright terms: Public domain | W3C validator |