ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcomg Unicode version

Theorem csbcomg 3068
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
csbcomg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    A( x)    B( y)    C( x, y)    V( x, y)    W( x, y)

Proof of Theorem csbcomg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2737 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 sbccom 3026 . . . . . 6  |-  ( [. A  /  x ]. [. B  /  y ]. z  e.  C  <->  [. B  /  y ]. [. A  /  x ]. z  e.  C
)
43a1i 9 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. z  e.  C  <->  [. B  /  y ]. [. A  /  x ]. z  e.  C )
)
5 sbcel2g 3066 . . . . . . 7  |-  ( B  e.  _V  ->  ( [. B  /  y ]. z  e.  C  <->  z  e.  [_ B  / 
y ]_ C ) )
65sbcbidv 3009 . . . . . 6  |-  ( B  e.  _V  ->  ( [. A  /  x ]. [. B  /  y ]. z  e.  C  <->  [. A  /  x ]. z  e.  [_ B  / 
y ]_ C ) )
76adantl 275 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. z  e.  C  <->  [. A  /  x ]. z  e.  [_ B  / 
y ]_ C ) )
8 sbcel2g 3066 . . . . . . 7  |-  ( A  e.  _V  ->  ( [. A  /  x ]. z  e.  C  <->  z  e.  [_ A  /  x ]_ C ) )
98sbcbidv 3009 . . . . . 6  |-  ( A  e.  _V  ->  ( [. B  /  y ]. [. A  /  x ]. z  e.  C  <->  [. B  /  y ]. z  e.  [_ A  /  x ]_ C ) )
109adantr 274 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. B  / 
y ]. [. A  /  x ]. z  e.  C  <->  [. B  /  y ]. z  e.  [_ A  /  x ]_ C ) )
114, 7, 103bitr3d 217 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. z  e.  [_ B  /  y ]_ C  <->  [. B  /  y ]. z  e.  [_ A  /  x ]_ C ) )
12 sbcel2g 3066 . . . . 5  |-  ( A  e.  _V  ->  ( [. A  /  x ]. z  e.  [_ B  /  y ]_ C  <->  z  e.  [_ A  /  x ]_ [_ B  / 
y ]_ C ) )
1312adantr 274 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. z  e.  [_ B  /  y ]_ C  <->  z  e.  [_ A  /  x ]_ [_ B  / 
y ]_ C ) )
14 sbcel2g 3066 . . . . 5  |-  ( B  e.  _V  ->  ( [. B  /  y ]. z  e.  [_ A  /  x ]_ C  <->  z  e.  [_ B  /  y ]_ [_ A  /  x ]_ C ) )
1514adantl 275 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. B  / 
y ]. z  e.  [_ A  /  x ]_ C  <->  z  e.  [_ B  / 
y ]_ [_ A  /  x ]_ C ) )
1611, 13, 153bitr3d 217 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( z  e.  [_ A  /  x ]_ [_ B  /  y ]_ C  <->  z  e.  [_ B  / 
y ]_ [_ A  /  x ]_ C ) )
1716eqrdv 2163 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C )
181, 2, 17syl2an 287 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  ovmpos  5965
  Copyright terms: Public domain W3C validator