ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbidmg Unicode version

Theorem csbidmg 3101
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
Assertion
Ref Expression
csbidmg  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ A  /  x ]_ B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem csbidmg
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 csbnest1g 3100 . . 3  |-  ( A  e.  _V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ [_ A  /  x ]_ A  /  x ]_ B )
3 csbconstg 3059 . . . 4  |-  ( A  e.  _V  ->  [_ A  /  x ]_ A  =  A )
43csbeq1d 3052 . . 3  |-  ( A  e.  _V  ->  [_ [_ A  /  x ]_ A  /  x ]_ B  =  [_ A  /  x ]_ B
)
52, 4eqtrd 2198 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ A  /  x ]_ B )
61, 5syl 14 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator