ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbidmg Unicode version

Theorem csbidmg 3158
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
Assertion
Ref Expression
csbidmg  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ A  /  x ]_ B )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem csbidmg
StepHypRef Expression
1 elex 2788 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 csbnest1g 3157 . . 3  |-  ( A  e.  _V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ [_ A  /  x ]_ A  /  x ]_ B )
3 csbconstg 3115 . . . 4  |-  ( A  e.  _V  ->  [_ A  /  x ]_ A  =  A )
43csbeq1d 3108 . . 3  |-  ( A  e.  _V  ->  [_ [_ A  /  x ]_ A  /  x ]_ B  =  [_ A  /  x ]_ B
)
52, 4eqtrd 2240 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ A  /  x ]_ B )
61, 5syl 14 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ A  /  x ]_ B  = 
[_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   [_csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006  df-csb 3102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator