ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbidmg GIF version

Theorem csbidmg 3105
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
Assertion
Ref Expression
csbidmg (𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbidmg
StepHypRef Expression
1 elex 2741 . 2 (𝐴𝑉𝐴 ∈ V)
2 csbnest1g 3104 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐴 / 𝑥𝐵)
3 csbconstg 3063 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 = 𝐴)
43csbeq1d 3056 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
52, 4eqtrd 2203 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
61, 5syl 14 1 (𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator