ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbidmg GIF version

Theorem csbidmg 3137
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
Assertion
Ref Expression
csbidmg (𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbidmg
StepHypRef Expression
1 elex 2771 . 2 (𝐴𝑉𝐴 ∈ V)
2 csbnest1g 3136 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐴 / 𝑥𝐵)
3 csbconstg 3094 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 = 𝐴)
43csbeq1d 3087 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
52, 4eqtrd 2226 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
61, 5syl 14 1 (𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator