Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbidmg | GIF version |
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) |
Ref | Expression |
---|---|
csbidmg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | csbnest1g 3100 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋⦋𝐴 / 𝑥⦌𝐴 / 𝑥⦌𝐵) | |
3 | csbconstg 3059 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐴 = 𝐴) | |
4 | 3 | csbeq1d 3052 | . . 3 ⊢ (𝐴 ∈ V → ⦋⦋𝐴 / 𝑥⦌𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
5 | 2, 4 | eqtrd 2198 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
6 | 1, 5 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |