ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie2g GIF version

Theorem csbie2g 3175
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3063 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
Hypotheses
Ref Expression
csbie2g.1 (𝑥 = 𝑦𝐵 = 𝐶)
csbie2g.2 (𝑦 = 𝐴𝐶 = 𝐷)
Assertion
Ref Expression
csbie2g (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem csbie2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3125 . 2 𝐴 / 𝑥𝐵 = {𝑧[𝐴 / 𝑥]𝑧𝐵}
2 csbie2g.1 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
32eleq2d 2299 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
4 csbie2g.2 . . . . 5 (𝑦 = 𝐴𝐶 = 𝐷)
54eleq2d 2299 . . . 4 (𝑦 = 𝐴 → (𝑧𝐶𝑧𝐷))
63, 5sbcie2g 3062 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐵𝑧𝐷))
76abbi1dv 2349 . 2 (𝐴𝑉 → {𝑧[𝐴 / 𝑥]𝑧𝐵} = 𝐷)
81, 7eqtrid 2274 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  [wsbc 3028  csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator