![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbie2g | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3020 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbie2g.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
csbie2g.2 | ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
csbie2g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3081 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
2 | csbie2g.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
3 | 2 | eleq2d 2263 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
4 | csbie2g.2 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) | |
5 | 4 | eleq2d 2263 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷)) |
6 | 3, 5 | sbcie2g 3019 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐷)) |
7 | 6 | abbi1dv 2313 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} = 𝐷) |
8 | 1, 7 | eqtrid 2238 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 [wsbc 2985 ⦋csb 3080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2986 df-csb 3081 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |