ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplit1f Unicode version

Theorem fprodsplit1f 12060
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplit1f.kph  |-  F/ k
ph
fprodsplit1f.fk  |-  ( ph  -> 
F/_ k D )
fprodsplit1f.a  |-  ( ph  ->  A  e.  Fin )
fprodsplit1f.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodsplit1f.c  |-  ( ph  ->  C  e.  A )
fprodsplit1f.d  |-  ( (
ph  /\  k  =  C )  ->  B  =  D )
Assertion
Ref Expression
fprodsplit1f  |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
Distinct variable groups:    A, k    C, k
Allowed substitution hints:    ph( k)    B( k)    D( k)

Proof of Theorem fprodsplit1f
StepHypRef Expression
1 fprodsplit1f.kph . . 3  |-  F/ k
ph
2 disjdif 3541 . . . 4  |-  ( { C }  i^i  ( A  \  { C }
) )  =  (/)
32a1i 9 . . 3  |-  ( ph  ->  ( { C }  i^i  ( A  \  { C } ) )  =  (/) )
4 fprodsplit1f.a . . . 4  |-  ( ph  ->  A  e.  Fin )
5 fprodsplit1f.c . . . . 5  |-  ( ph  ->  C  e.  A )
6 snfig 6930 . . . . 5  |-  ( C  e.  A  ->  { C }  e.  Fin )
75, 6syl 14 . . . 4  |-  ( ph  ->  { C }  e.  Fin )
85snssd 3789 . . . 4  |-  ( ph  ->  { C }  C_  A )
9 undiffi 7048 . . . 4  |-  ( ( A  e.  Fin  /\  { C }  e.  Fin  /\ 
{ C }  C_  A )  ->  A  =  ( { C }  u.  ( A  \  { C } ) ) )
104, 7, 8, 9syl3anc 1250 . . 3  |-  ( ph  ->  A  =  ( { C }  u.  ( A  \  { C }
) ) )
11 fprodsplit1f.b . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
121, 3, 10, 4, 11fprodsplitf 12058 . 2  |-  ( ph  ->  prod_ k  e.  A  B  =  ( prod_ k  e.  { C } B  x.  prod_ k  e.  ( A  \  { C } ) B ) )
135ancli 323 . . . . . 6  |-  ( ph  ->  ( ph  /\  C  e.  A ) )
14 nfv 1552 . . . . . . . . 9  |-  F/ k  C  e.  A
151, 14nfan 1589 . . . . . . . 8  |-  F/ k ( ph  /\  C  e.  A )
16 nfcsb1v 3134 . . . . . . . . 9  |-  F/_ k [_ C  /  k ]_ B
1716nfel1 2361 . . . . . . . 8  |-  F/ k
[_ C  /  k ]_ B  e.  CC
1815, 17nfim 1596 . . . . . . 7  |-  F/ k ( ( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC )
19 eleq1 2270 . . . . . . . . 9  |-  ( k  =  C  ->  (
k  e.  A  <->  C  e.  A ) )
2019anbi2d 464 . . . . . . . 8  |-  ( k  =  C  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  C  e.  A ) ) )
21 csbeq1a 3110 . . . . . . . . 9  |-  ( k  =  C  ->  B  =  [_ C  /  k ]_ B )
2221eleq1d 2276 . . . . . . . 8  |-  ( k  =  C  ->  ( B  e.  CC  <->  [_ C  / 
k ]_ B  e.  CC ) )
2320, 22imbi12d 234 . . . . . . 7  |-  ( k  =  C  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC ) ) )
2418, 23, 11vtoclg1f 2837 . . . . . 6  |-  ( C  e.  A  ->  (
( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC ) )
255, 13, 24sylc 62 . . . . 5  |-  ( ph  ->  [_ C  /  k ]_ B  e.  CC )
26 prodsns 12029 . . . . 5  |-  ( ( C  e.  A  /\  [_ C  /  k ]_ B  e.  CC )  ->  prod_ k  e.  { C } B  =  [_ C  /  k ]_ B
)
275, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  prod_ k  e.  { C } B  =  [_ C  /  k ]_ B
)
28 fprodsplit1f.fk . . . . 5  |-  ( ph  -> 
F/_ k D )
29 fprodsplit1f.d . . . . 5  |-  ( (
ph  /\  k  =  C )  ->  B  =  D )
301, 28, 5, 29csbiedf 3142 . . . 4  |-  ( ph  ->  [_ C  /  k ]_ B  =  D
)
3127, 30eqtrd 2240 . . 3  |-  ( ph  ->  prod_ k  e.  { C } B  =  D )
3231oveq1d 5982 . 2  |-  ( ph  ->  ( prod_ k  e.  { C } B  x.  prod_ k  e.  ( A  \  { C } ) B )  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
3312, 32eqtrd 2240 1  |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   [_csb 3101    \ cdif 3171    u. cun 3172    i^i cin 3173    C_ wss 3174   (/)c0 3468   {csn 3643  (class class class)co 5967   Fincfn 6850   CCcc 7958    x. cmul 7965   prod_cprod 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977
This theorem is referenced by:  fprodeq0g  12064
  Copyright terms: Public domain W3C validator