ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplit1f Unicode version

Theorem fprodsplit1f 11777
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplit1f.kph  |-  F/ k
ph
fprodsplit1f.fk  |-  ( ph  -> 
F/_ k D )
fprodsplit1f.a  |-  ( ph  ->  A  e.  Fin )
fprodsplit1f.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodsplit1f.c  |-  ( ph  ->  C  e.  A )
fprodsplit1f.d  |-  ( (
ph  /\  k  =  C )  ->  B  =  D )
Assertion
Ref Expression
fprodsplit1f  |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
Distinct variable groups:    A, k    C, k
Allowed substitution hints:    ph( k)    B( k)    D( k)

Proof of Theorem fprodsplit1f
StepHypRef Expression
1 fprodsplit1f.kph . . 3  |-  F/ k
ph
2 disjdif 3519 . . . 4  |-  ( { C }  i^i  ( A  \  { C }
) )  =  (/)
32a1i 9 . . 3  |-  ( ph  ->  ( { C }  i^i  ( A  \  { C } ) )  =  (/) )
4 fprodsplit1f.a . . . 4  |-  ( ph  ->  A  e.  Fin )
5 fprodsplit1f.c . . . . 5  |-  ( ph  ->  C  e.  A )
6 snfig 6868 . . . . 5  |-  ( C  e.  A  ->  { C }  e.  Fin )
75, 6syl 14 . . . 4  |-  ( ph  ->  { C }  e.  Fin )
85snssd 3763 . . . 4  |-  ( ph  ->  { C }  C_  A )
9 undiffi 6981 . . . 4  |-  ( ( A  e.  Fin  /\  { C }  e.  Fin  /\ 
{ C }  C_  A )  ->  A  =  ( { C }  u.  ( A  \  { C } ) ) )
104, 7, 8, 9syl3anc 1249 . . 3  |-  ( ph  ->  A  =  ( { C }  u.  ( A  \  { C }
) ) )
11 fprodsplit1f.b . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
121, 3, 10, 4, 11fprodsplitf 11775 . 2  |-  ( ph  ->  prod_ k  e.  A  B  =  ( prod_ k  e.  { C } B  x.  prod_ k  e.  ( A  \  { C } ) B ) )
135ancli 323 . . . . . 6  |-  ( ph  ->  ( ph  /\  C  e.  A ) )
14 nfv 1539 . . . . . . . . 9  |-  F/ k  C  e.  A
151, 14nfan 1576 . . . . . . . 8  |-  F/ k ( ph  /\  C  e.  A )
16 nfcsb1v 3113 . . . . . . . . 9  |-  F/_ k [_ C  /  k ]_ B
1716nfel1 2347 . . . . . . . 8  |-  F/ k
[_ C  /  k ]_ B  e.  CC
1815, 17nfim 1583 . . . . . . 7  |-  F/ k ( ( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC )
19 eleq1 2256 . . . . . . . . 9  |-  ( k  =  C  ->  (
k  e.  A  <->  C  e.  A ) )
2019anbi2d 464 . . . . . . . 8  |-  ( k  =  C  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  C  e.  A ) ) )
21 csbeq1a 3089 . . . . . . . . 9  |-  ( k  =  C  ->  B  =  [_ C  /  k ]_ B )
2221eleq1d 2262 . . . . . . . 8  |-  ( k  =  C  ->  ( B  e.  CC  <->  [_ C  / 
k ]_ B  e.  CC ) )
2320, 22imbi12d 234 . . . . . . 7  |-  ( k  =  C  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC ) ) )
2418, 23, 11vtoclg1f 2819 . . . . . 6  |-  ( C  e.  A  ->  (
( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC ) )
255, 13, 24sylc 62 . . . . 5  |-  ( ph  ->  [_ C  /  k ]_ B  e.  CC )
26 prodsns 11746 . . . . 5  |-  ( ( C  e.  A  /\  [_ C  /  k ]_ B  e.  CC )  ->  prod_ k  e.  { C } B  =  [_ C  /  k ]_ B
)
275, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  prod_ k  e.  { C } B  =  [_ C  /  k ]_ B
)
28 fprodsplit1f.fk . . . . 5  |-  ( ph  -> 
F/_ k D )
29 fprodsplit1f.d . . . . 5  |-  ( (
ph  /\  k  =  C )  ->  B  =  D )
301, 28, 5, 29csbiedf 3121 . . . 4  |-  ( ph  ->  [_ C  /  k ]_ B  =  D
)
3127, 30eqtrd 2226 . . 3  |-  ( ph  ->  prod_ k  e.  { C } B  =  D )
3231oveq1d 5933 . 2  |-  ( ph  ->  ( prod_ k  e.  { C } B  x.  prod_ k  e.  ( A  \  { C } ) B )  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
3312, 32eqtrd 2226 1  |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1471    e. wcel 2164   F/_wnfc 2323   [_csb 3080    \ cdif 3150    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3446   {csn 3618  (class class class)co 5918   Fincfn 6794   CCcc 7870    x. cmul 7877   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by:  fprodeq0g  11781
  Copyright terms: Public domain W3C validator