ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplit1f Unicode version

Theorem fprodsplit1f 11575
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplit1f.kph  |-  F/ k
ph
fprodsplit1f.fk  |-  ( ph  -> 
F/_ k D )
fprodsplit1f.a  |-  ( ph  ->  A  e.  Fin )
fprodsplit1f.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodsplit1f.c  |-  ( ph  ->  C  e.  A )
fprodsplit1f.d  |-  ( (
ph  /\  k  =  C )  ->  B  =  D )
Assertion
Ref Expression
fprodsplit1f  |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
Distinct variable groups:    A, k    C, k
Allowed substitution hints:    ph( k)    B( k)    D( k)

Proof of Theorem fprodsplit1f
StepHypRef Expression
1 fprodsplit1f.kph . . 3  |-  F/ k
ph
2 disjdif 3481 . . . 4  |-  ( { C }  i^i  ( A  \  { C }
) )  =  (/)
32a1i 9 . . 3  |-  ( ph  ->  ( { C }  i^i  ( A  \  { C } ) )  =  (/) )
4 fprodsplit1f.a . . . 4  |-  ( ph  ->  A  e.  Fin )
5 fprodsplit1f.c . . . . 5  |-  ( ph  ->  C  e.  A )
6 snfig 6780 . . . . 5  |-  ( C  e.  A  ->  { C }  e.  Fin )
75, 6syl 14 . . . 4  |-  ( ph  ->  { C }  e.  Fin )
85snssd 3718 . . . 4  |-  ( ph  ->  { C }  C_  A )
9 undiffi 6890 . . . 4  |-  ( ( A  e.  Fin  /\  { C }  e.  Fin  /\ 
{ C }  C_  A )  ->  A  =  ( { C }  u.  ( A  \  { C } ) ) )
104, 7, 8, 9syl3anc 1228 . . 3  |-  ( ph  ->  A  =  ( { C }  u.  ( A  \  { C }
) ) )
11 fprodsplit1f.b . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
121, 3, 10, 4, 11fprodsplitf 11573 . 2  |-  ( ph  ->  prod_ k  e.  A  B  =  ( prod_ k  e.  { C } B  x.  prod_ k  e.  ( A  \  { C } ) B ) )
135ancli 321 . . . . . 6  |-  ( ph  ->  ( ph  /\  C  e.  A ) )
14 nfv 1516 . . . . . . . . 9  |-  F/ k  C  e.  A
151, 14nfan 1553 . . . . . . . 8  |-  F/ k ( ph  /\  C  e.  A )
16 nfcsb1v 3078 . . . . . . . . 9  |-  F/_ k [_ C  /  k ]_ B
1716nfel1 2319 . . . . . . . 8  |-  F/ k
[_ C  /  k ]_ B  e.  CC
1815, 17nfim 1560 . . . . . . 7  |-  F/ k ( ( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC )
19 eleq1 2229 . . . . . . . . 9  |-  ( k  =  C  ->  (
k  e.  A  <->  C  e.  A ) )
2019anbi2d 460 . . . . . . . 8  |-  ( k  =  C  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  C  e.  A ) ) )
21 csbeq1a 3054 . . . . . . . . 9  |-  ( k  =  C  ->  B  =  [_ C  /  k ]_ B )
2221eleq1d 2235 . . . . . . . 8  |-  ( k  =  C  ->  ( B  e.  CC  <->  [_ C  / 
k ]_ B  e.  CC ) )
2320, 22imbi12d 233 . . . . . . 7  |-  ( k  =  C  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  CC )  <-> 
( ( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC ) ) )
2418, 23, 11vtoclg1f 2785 . . . . . 6  |-  ( C  e.  A  ->  (
( ph  /\  C  e.  A )  ->  [_ C  /  k ]_ B  e.  CC ) )
255, 13, 24sylc 62 . . . . 5  |-  ( ph  ->  [_ C  /  k ]_ B  e.  CC )
26 prodsns 11544 . . . . 5  |-  ( ( C  e.  A  /\  [_ C  /  k ]_ B  e.  CC )  ->  prod_ k  e.  { C } B  =  [_ C  /  k ]_ B
)
275, 25, 26syl2anc 409 . . . 4  |-  ( ph  ->  prod_ k  e.  { C } B  =  [_ C  /  k ]_ B
)
28 fprodsplit1f.fk . . . . 5  |-  ( ph  -> 
F/_ k D )
29 fprodsplit1f.d . . . . 5  |-  ( (
ph  /\  k  =  C )  ->  B  =  D )
301, 28, 5, 29csbiedf 3085 . . . 4  |-  ( ph  ->  [_ C  /  k ]_ B  =  D
)
3127, 30eqtrd 2198 . . 3  |-  ( ph  ->  prod_ k  e.  { C } B  =  D )
3231oveq1d 5857 . 2  |-  ( ph  ->  ( prod_ k  e.  { C } B  x.  prod_ k  e.  ( A  \  { C } ) B )  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
3312, 32eqtrd 2198 1  |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295   [_csb 3045    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576  (class class class)co 5842   Fincfn 6706   CCcc 7751    x. cmul 7758   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodeq0g  11579
  Copyright terms: Public domain W3C validator