![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbiedf | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbiedf.1 | ⊢ Ⅎ𝑥𝜑 |
csbiedf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐶) |
csbiedf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbiedf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbiedf | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiedf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | csbiedf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ex 113 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → 𝐵 = 𝐶)) |
4 | 1, 3 | alrimi 1460 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶)) |
5 | csbiedf.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | csbiedf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
7 | csbiebt 2967 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | |
8 | 5, 6, 7 | syl2anc 403 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
9 | 4, 8 | mpbid 145 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1287 = wceq 1289 Ⅎwnf 1394 ∈ wcel 1438 Ⅎwnfc 2215 ⦋csb 2933 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-sbc 2841 df-csb 2934 |
This theorem is referenced by: csbied 2974 csbie2t 2976 |
Copyright terms: Public domain | W3C validator |