| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | Unicode version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 |
|
| 3eqtr3g.2 |
|
| 3eqtr3g.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 |
. . 3
| |
| 2 | 3eqtr3g.1 |
. . 3
| |
| 3 | 1, 2 | eqtr3id 2254 |
. 2
|
| 4 | 3eqtr3g.3 |
. 2
| |
| 5 | 3, 4 | eqtrdi 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: csbnest1g 3157 disjdif2 3547 dfopg 3831 xpid11 4920 sqxpeq0 5125 cores2 5214 funcoeqres 5575 dftpos2 6370 ine0 8501 fisumcom2 11864 fisum0diag2 11873 mertenslemi1 11961 fprodcom2fi 12052 fprodmodd 12067 bitsinv1 12388 4sqlem10 12825 setsslnid 12999 xpsff1o 13296 eqglact 13676 oppr1g 13959 dvmptccn 15302 dvmptc 15304 dvmptfsum 15312 fsumdvdsmul 15578 nninffeq 16159 |
| Copyright terms: Public domain | W3C validator |