Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3g | Unicode version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
Ref | Expression |
---|---|
3eqtr3g.1 | |
3eqtr3g.2 | |
3eqtr3g.3 |
Ref | Expression |
---|---|
3eqtr3g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3g.2 | . . 3 | |
2 | 3eqtr3g.1 | . . 3 | |
3 | 1, 2 | eqtr3id 2217 | . 2 |
4 | 3eqtr3g.3 | . 2 | |
5 | 3, 4 | eqtrdi 2219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbnest1g 3104 disjdif2 3492 dfopg 3761 xpid11 4832 sqxpeq0 5032 cores2 5121 funcoeqres 5471 dftpos2 6237 ine0 8300 fisumcom2 11388 fisum0diag2 11397 mertenslemi1 11485 fprodcom2fi 11576 fprodmodd 11591 4sqlem10 12326 setsslnid 12454 dvmptccn 13432 nninffeq 14013 |
Copyright terms: Public domain | W3C validator |