| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | Unicode version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 |
|
| 3eqtr3g.2 |
|
| 3eqtr3g.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 |
. . 3
| |
| 2 | 3eqtr3g.1 |
. . 3
| |
| 3 | 1, 2 | eqtr3id 2252 |
. 2
|
| 4 | 3eqtr3g.3 |
. 2
| |
| 5 | 3, 4 | eqtrdi 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: csbnest1g 3149 disjdif2 3539 dfopg 3817 xpid11 4902 sqxpeq0 5107 cores2 5196 funcoeqres 5555 dftpos2 6349 ine0 8468 fisumcom2 11782 fisum0diag2 11791 mertenslemi1 11879 fprodcom2fi 11970 fprodmodd 11985 bitsinv1 12306 4sqlem10 12743 setsslnid 12917 xpsff1o 13214 eqglact 13594 oppr1g 13877 dvmptccn 15220 dvmptc 15222 dvmptfsum 15230 fsumdvdsmul 15496 nninffeq 15994 |
| Copyright terms: Public domain | W3C validator |