| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | Unicode version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 |
|
| 3eqtr3g.2 |
|
| 3eqtr3g.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 |
. . 3
| |
| 2 | 3eqtr3g.1 |
. . 3
| |
| 3 | 1, 2 | eqtr3id 2243 |
. 2
|
| 4 | 3eqtr3g.3 |
. 2
| |
| 5 | 3, 4 | eqtrdi 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: csbnest1g 3140 disjdif2 3530 dfopg 3807 xpid11 4890 sqxpeq0 5094 cores2 5183 funcoeqres 5538 dftpos2 6328 ine0 8437 fisumcom2 11620 fisum0diag2 11629 mertenslemi1 11717 fprodcom2fi 11808 fprodmodd 11823 bitsinv1 12144 4sqlem10 12581 setsslnid 12755 xpsff1o 13051 eqglact 13431 oppr1g 13714 dvmptccn 15035 dvmptc 15037 dvmptfsum 15045 fsumdvdsmul 15311 nninffeq 15751 |
| Copyright terms: Public domain | W3C validator |