| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | Unicode version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 |
|
| 3eqtr3g.2 |
|
| 3eqtr3g.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 |
. . 3
| |
| 2 | 3eqtr3g.1 |
. . 3
| |
| 3 | 1, 2 | eqtr3id 2276 |
. 2
|
| 4 | 3eqtr3g.3 |
. 2
| |
| 5 | 3, 4 | eqtrdi 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: csbnest1g 3180 disjdif2 3570 dfopg 3855 xpid11 4947 sqxpeq0 5152 cores2 5241 funcoeqres 5603 dftpos2 6407 ine0 8540 fisumcom2 11949 fisum0diag2 11958 mertenslemi1 12046 fprodcom2fi 12137 fprodmodd 12152 bitsinv1 12473 4sqlem10 12910 setsslnid 13084 xpsff1o 13382 eqglact 13762 oppr1g 14045 dvmptccn 15389 dvmptc 15391 dvmptfsum 15399 fsumdvdsmul 15665 nninffeq 16386 |
| Copyright terms: Public domain | W3C validator |