![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbnest1g | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbnest1g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 2999 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
2 | 1 | ax-gen 1406 | . . 3 ⊢ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
3 | csbnestgf 3016 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) | |
4 | 2, 3 | mpan2 419 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) |
5 | csbco 2978 | . . 3 ⊢ ⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶 | |
6 | 5 | csbeq2i 2993 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 |
7 | csbco 2978 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶 | |
8 | 4, 6, 7 | 3eqtr3g 2168 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1310 = wceq 1312 ∈ wcel 1461 Ⅎwnfc 2240 ⦋csb 2969 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-sbc 2877 df-csb 2970 |
This theorem is referenced by: csbidmg 3020 |
Copyright terms: Public domain | W3C validator |