Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbnest1g | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbnest1g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3082 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
2 | 1 | ax-gen 1442 | . . 3 ⊢ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
3 | csbnestgf 3101 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) | |
4 | 2, 3 | mpan2 423 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) |
5 | csbco 3059 | . . 3 ⊢ ⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶 | |
6 | 5 | csbeq2i 3076 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 |
7 | csbco 3059 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶 | |
8 | 4, 6, 7 | 3eqtr3g 2226 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 ∈ wcel 2141 Ⅎwnfc 2299 ⦋csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbidmg 3105 |
Copyright terms: Public domain | W3C validator |