ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnest1g GIF version

Theorem csbnest1g 3180
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
csbnest1g (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)

Proof of Theorem csbnest1g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3157 . . . 4 𝑥𝑦 / 𝑥𝐶
21ax-gen 1495 . . 3 𝑦𝑥𝑦 / 𝑥𝐶
3 csbnestgf 3177 . . 3 ((𝐴𝑉 ∧ ∀𝑦𝑥𝑦 / 𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
42, 3mpan2 425 . 2 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
5 csbco 3134 . . 3 𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐵 / 𝑥𝐶
65csbeq2i 3151 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
7 csbco 3134 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
84, 6, 73eqtr3g 2285 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wcel 2200  wnfc 2359  csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by:  csbidmg  3181
  Copyright terms: Public domain W3C validator