| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbnest1g | GIF version | ||
| Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
| Ref | Expression |
|---|---|
| csbnest1g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v 3157 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 2 | 1 | ax-gen 1495 | . . 3 ⊢ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
| 3 | csbnestgf 3177 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) |
| 5 | csbco 3134 | . . 3 ⊢ ⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶 | |
| 6 | 5 | csbeq2i 3151 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 |
| 7 | csbco 3134 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶 | |
| 8 | 4, 6, 7 | 3eqtr3g 2285 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 = wceq 1395 ∈ wcel 2200 Ⅎwnfc 2359 ⦋csb 3124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbidmg 3181 |
| Copyright terms: Public domain | W3C validator |