![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbnest1g | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbnest1g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3092 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
2 | 1 | ax-gen 1449 | . . 3 ⊢ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
3 | csbnestgf 3111 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) | |
4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶) |
5 | csbco 3069 | . . 3 ⊢ ⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶 | |
6 | 5 | csbeq2i 3086 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 |
7 | csbco 3069 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶 | |
8 | 4, 6, 7 | 3eqtr3g 2233 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 = wceq 1353 ∈ wcel 2148 Ⅎwnfc 2306 ⦋csb 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-sbc 2965 df-csb 3060 |
This theorem is referenced by: csbidmg 3115 |
Copyright terms: Public domain | W3C validator |