ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2i Unicode version

Theorem csbeq2i 3085
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2i.1  |-  B  =  C
Assertion
Ref Expression
csbeq2i  |-  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C

Proof of Theorem csbeq2i
StepHypRef Expression
1 csbeq2i.1 . . . 4  |-  B  =  C
21a1i 9 . . 3  |-  ( T. 
->  B  =  C
)
32csbeq2dv 3084 . 2  |-  ( T. 
->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
43mptru 1362 1  |-  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C
Colors of variables: wff set class
Syntax hints:    = wceq 1353   T. wtru 1354   [_csb 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2964  df-csb 3059
This theorem is referenced by:  csbvarg  3086  csbnest1g  3113  csbsng  3654  csbunig  3818  csbxpg  4708  csbcnvg  4812  csbdmg  4822  csbresg  4911  csbrng  5091  csbfv12g  5552  csbnegg  8155  iseqf1olemjpcl  10495  iseqf1olemqpcl  10496  iseqf1olemfvp  10497  seq3f1olemqsum  10500
  Copyright terms: Public domain W3C validator