Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbsng Unicode version

Theorem csbsng 3584
 Description: Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng

Proof of Theorem csbsng
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbabg 3061 . . 3
2 sbceq2g 3024 . . . 4
32abbidv 2257 . . 3
41, 3eqtrd 2172 . 2
5 df-sn 3533 . . 3
65csbeq2i 3029 . 2
7 df-sn 3533 . 2
84, 6, 73eqtr4g 2197 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331   wcel 1480  cab 2125  wsbc 2909  csb 3003  csn 3527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sbc 2910  df-csb 3004  df-sn 3533 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator