ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbsng Unicode version

Theorem csbsng 3679
Description: Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)

Proof of Theorem csbsng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbabg 3142 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  [. A  /  x ]. y  =  B } )
2 sbceq2g 3102 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) )
32abbidv 2311 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } )
41, 3eqtrd 2226 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } )
5 df-sn 3624 . . 3  |-  { B }  =  { y  |  y  =  B }
65csbeq2i 3107 . 2  |-  [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ { y  |  y  =  B }
7 df-sn 3624 . 2  |-  { [_ A  /  x ]_ B }  =  { y  |  y  =  [_ A  /  x ]_ B }
84, 6, 73eqtr4g 2251 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   [.wsbc 2985   [_csb 3080   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081  df-sn 3624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator