ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbsng Unicode version

Theorem csbsng 3696
Description: Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)

Proof of Theorem csbsng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbabg 3157 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  [. A  /  x ]. y  =  B } )
2 sbceq2g 3117 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) )
32abbidv 2324 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } )
41, 3eqtrd 2239 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } )
5 df-sn 3641 . . 3  |-  { B }  =  { y  |  y  =  B }
65csbeq2i 3122 . 2  |-  [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ { y  |  y  =  B }
7 df-sn 3641 . 2  |-  { [_ A  /  x ]_ B }  =  { y  |  y  =  [_ A  /  x ]_ B }
84, 6, 73eqtr4g 2264 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {cab 2192   [.wsbc 3000   [_csb 3095   {csn 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3001  df-csb 3096  df-sn 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator