ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2g Unicode version

Theorem sbceq2g 3049
Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  B  =  [_ A  /  x ]_ C ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem sbceq2g
StepHypRef Expression
1 sbceqg 3043 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
2 csbconstg 3041 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
32eqeq1d 2163 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  B  =  [_ A  /  x ]_ C ) )
41, 3bitrd 187 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  B  =  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 2125   [.wsbc 2933   [_csb 3027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-sbc 2934  df-csb 3028
This theorem is referenced by:  csbsng  3616  f1od2  6172
  Copyright terms: Public domain W3C validator