ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbabg Unicode version

Theorem csbabg 3142
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
csbabg  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  ph }  =  { y  |  [. A  /  x ]. ph }
)
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)    V( x, y)

Proof of Theorem csbabg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbccom 3061 . . . 4  |-  ( [. z  /  y ]. [. A  /  x ]. ph  <->  [. A  /  x ]. [. z  / 
y ]. ph )
2 df-clab 2180 . . . . 5  |-  ( z  e.  { y  | 
[. A  /  x ]. ph }  <->  [ z  /  y ] [. A  /  x ]. ph )
3 sbsbc 2989 . . . . 5  |-  ( [ z  /  y ]
[. A  /  x ]. ph  <->  [. z  /  y ]. [. A  /  x ]. ph )
42, 3bitri 184 . . . 4  |-  ( z  e.  { y  | 
[. A  /  x ]. ph }  <->  [. z  / 
y ]. [. A  /  x ]. ph )
5 df-clab 2180 . . . . . 6  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
6 sbsbc 2989 . . . . . 6  |-  ( [ z  /  y ]
ph 
<-> 
[. z  /  y ]. ph )
75, 6bitri 184 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [. z  / 
y ]. ph )
87sbcbii 3045 . . . 4  |-  ( [. A  /  x ]. z  e.  { y  |  ph } 
<-> 
[. A  /  x ]. [. z  /  y ]. ph )
91, 4, 83bitr4i 212 . . 3  |-  ( z  e.  { y  | 
[. A  /  x ]. ph }  <->  [. A  /  x ]. z  e.  {
y  |  ph }
)
10 sbcel2g 3101 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  { y  |  ph }  <->  z  e.  [_ A  /  x ]_ { y  |  ph } ) )
119, 10bitr2id 193 . 2  |-  ( A  e.  V  ->  (
z  e.  [_ A  /  x ]_ { y  |  ph }  <->  z  e.  { y  |  [. A  /  x ]. ph }
) )
1211eqrdv 2191 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  ph }  =  { y  |  [. A  /  x ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   [wsb 1773    e. wcel 2164   {cab 2179   [.wsbc 2985   [_csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by:  csbsng  3679  csbunig  3843  csbxpg  4740  csbdmg  4856  csbrng  5127  csbwrdg  10943
  Copyright terms: Public domain W3C validator