Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcun | Unicode version |
Description: The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) |
Ref | Expression |
---|---|
dcun.a | DECID |
dcun.b | DECID |
Ref | Expression |
---|---|
dcun | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun1 3274 | . . . . 5 | |
2 | 1 | adantl 275 | . . . 4 |
3 | 2 | orcd 723 | . . 3 |
4 | df-dc 821 | . . 3 DECID | |
5 | 3, 4 | sylibr 133 | . 2 DECID |
6 | elun2 3275 | . . . . . 6 | |
7 | 6 | adantl 275 | . . . . 5 |
8 | 7 | orcd 723 | . . . 4 |
9 | 8, 4 | sylibr 133 | . . 3 DECID |
10 | simplr 520 | . . . . . . 7 | |
11 | simpr 109 | . . . . . . 7 | |
12 | ioran 742 | . . . . . . 7 | |
13 | 10, 11, 12 | sylanbrc 414 | . . . . . 6 |
14 | elun 3248 | . . . . . 6 | |
15 | 13, 14 | sylnibr 667 | . . . . 5 |
16 | 15 | olcd 724 | . . . 4 |
17 | 16, 4 | sylibr 133 | . . 3 DECID |
18 | dcun.b | . . . . 5 DECID | |
19 | exmiddc 822 | . . . . 5 DECID | |
20 | 18, 19 | syl 14 | . . . 4 |
21 | 20 | adantr 274 | . . 3 |
22 | 9, 17, 21 | mpjaodan 788 | . 2 DECID |
23 | dcun.a | . . 3 DECID | |
24 | exmiddc 822 | . . 3 DECID | |
25 | 23, 24 | syl 14 | . 2 |
26 | 5, 22, 25 | mpjaodan 788 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 wcel 2128 cun 3100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 |
This theorem is referenced by: sumsplitdc 11322 |
Copyright terms: Public domain | W3C validator |