| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcun | Unicode version | ||
| Description: The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| dcun.a | 
 | 
| dcun.b | 
 | 
| Ref | Expression | 
|---|---|
| dcun | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elun1 3330 | 
. . . . 5
 | |
| 2 | 1 | adantl 277 | 
. . . 4
 | 
| 3 | 2 | orcd 734 | 
. . 3
 | 
| 4 | df-dc 836 | 
. . 3
 | |
| 5 | 3, 4 | sylibr 134 | 
. 2
 | 
| 6 | elun2 3331 | 
. . . . . 6
 | |
| 7 | 6 | adantl 277 | 
. . . . 5
 | 
| 8 | 7 | orcd 734 | 
. . . 4
 | 
| 9 | 8, 4 | sylibr 134 | 
. . 3
 | 
| 10 | simplr 528 | 
. . . . . . 7
 | |
| 11 | simpr 110 | 
. . . . . . 7
 | |
| 12 | ioran 753 | 
. . . . . . 7
 | |
| 13 | 10, 11, 12 | sylanbrc 417 | 
. . . . . 6
 | 
| 14 | elun 3304 | 
. . . . . 6
 | |
| 15 | 13, 14 | sylnibr 678 | 
. . . . 5
 | 
| 16 | 15 | olcd 735 | 
. . . 4
 | 
| 17 | 16, 4 | sylibr 134 | 
. . 3
 | 
| 18 | dcun.b | 
. . . . 5
 | |
| 19 | exmiddc 837 | 
. . . . 5
 | |
| 20 | 18, 19 | syl 14 | 
. . . 4
 | 
| 21 | 20 | adantr 276 | 
. . 3
 | 
| 22 | 9, 17, 21 | mpjaodan 799 | 
. 2
 | 
| 23 | dcun.a | 
. . 3
 | |
| 24 | exmiddc 837 | 
. . 3
 | |
| 25 | 23, 24 | syl 14 | 
. 2
 | 
| 26 | 5, 22, 25 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: tpfidceq 6991 sumsplitdc 11597 | 
| Copyright terms: Public domain | W3C validator |