| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcun | Unicode version | ||
| Description: The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcun.a |
|
| dcun.b |
|
| Ref | Expression |
|---|---|
| dcun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun1 3344 |
. . . . 5
| |
| 2 | 1 | adantl 277 |
. . . 4
|
| 3 | 2 | orcd 735 |
. . 3
|
| 4 | df-dc 837 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | elun2 3345 |
. . . . . 6
| |
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | 7 | orcd 735 |
. . . 4
|
| 9 | 8, 4 | sylibr 134 |
. . 3
|
| 10 | simplr 528 |
. . . . . . 7
| |
| 11 | simpr 110 |
. . . . . . 7
| |
| 12 | ioran 754 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . . 6
|
| 14 | elun 3318 |
. . . . . 6
| |
| 15 | 13, 14 | sylnibr 679 |
. . . . 5
|
| 16 | 15 | olcd 736 |
. . . 4
|
| 17 | 16, 4 | sylibr 134 |
. . 3
|
| 18 | dcun.b |
. . . . 5
| |
| 19 | exmiddc 838 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 20 | adantr 276 |
. . 3
|
| 22 | 9, 17, 21 | mpjaodan 800 |
. 2
|
| 23 | dcun.a |
. . 3
| |
| 24 | exmiddc 838 |
. . 3
| |
| 25 | 23, 24 | syl 14 |
. 2
|
| 26 | 5, 22, 25 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: tpfidceq 7042 sumsplitdc 11818 |
| Copyright terms: Public domain | W3C validator |