ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcun GIF version

Theorem dcun 3519
Description: The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.)
Hypotheses
Ref Expression
dcun.a (𝜑DECID 𝑘𝐴)
dcun.b (𝜑DECID 𝑘𝐵)
Assertion
Ref Expression
dcun (𝜑DECID 𝑘 ∈ (𝐴𝐵))

Proof of Theorem dcun
StepHypRef Expression
1 elun1 3289 . . . . 5 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
21adantl 275 . . . 4 ((𝜑𝑘𝐴) → 𝑘 ∈ (𝐴𝐵))
32orcd 723 . . 3 ((𝜑𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
4 df-dc 825 . . 3 (DECID 𝑘 ∈ (𝐴𝐵) ↔ (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
53, 4sylibr 133 . 2 ((𝜑𝑘𝐴) → DECID 𝑘 ∈ (𝐴𝐵))
6 elun2 3290 . . . . . 6 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
76adantl 275 . . . . 5 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ 𝑘𝐵) → 𝑘 ∈ (𝐴𝐵))
87orcd 723 . . . 4 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ 𝑘𝐵) → (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
98, 4sylibr 133 . . 3 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ 𝑘𝐵) → DECID 𝑘 ∈ (𝐴𝐵))
10 simplr 520 . . . . . . 7 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ 𝑘𝐴)
11 simpr 109 . . . . . . 7 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ 𝑘𝐵)
12 ioran 742 . . . . . . 7 (¬ (𝑘𝐴𝑘𝐵) ↔ (¬ 𝑘𝐴 ∧ ¬ 𝑘𝐵))
1310, 11, 12sylanbrc 414 . . . . . 6 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ (𝑘𝐴𝑘𝐵))
14 elun 3263 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
1513, 14sylnibr 667 . . . . 5 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ 𝑘 ∈ (𝐴𝐵))
1615olcd 724 . . . 4 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
1716, 4sylibr 133 . . 3 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → DECID 𝑘 ∈ (𝐴𝐵))
18 dcun.b . . . . 5 (𝜑DECID 𝑘𝐵)
19 exmiddc 826 . . . . 5 (DECID 𝑘𝐵 → (𝑘𝐵 ∨ ¬ 𝑘𝐵))
2018, 19syl 14 . . . 4 (𝜑 → (𝑘𝐵 ∨ ¬ 𝑘𝐵))
2120adantr 274 . . 3 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘𝐵 ∨ ¬ 𝑘𝐵))
229, 17, 21mpjaodan 788 . 2 ((𝜑 ∧ ¬ 𝑘𝐴) → DECID 𝑘 ∈ (𝐴𝐵))
23 dcun.a . . 3 (𝜑DECID 𝑘𝐴)
24 exmiddc 826 . . 3 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2523, 24syl 14 . 2 (𝜑 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
265, 22, 25mpjaodan 788 1 (𝜑DECID 𝑘 ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  wcel 2136  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  sumsplitdc  11373
  Copyright terms: Public domain W3C validator