ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcun GIF version

Theorem dcun 3531
Description: The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.)
Hypotheses
Ref Expression
dcun.a (𝜑DECID 𝑘𝐴)
dcun.b (𝜑DECID 𝑘𝐵)
Assertion
Ref Expression
dcun (𝜑DECID 𝑘 ∈ (𝐴𝐵))

Proof of Theorem dcun
StepHypRef Expression
1 elun1 3300 . . . . 5 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
21adantl 277 . . . 4 ((𝜑𝑘𝐴) → 𝑘 ∈ (𝐴𝐵))
32orcd 733 . . 3 ((𝜑𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
4 df-dc 835 . . 3 (DECID 𝑘 ∈ (𝐴𝐵) ↔ (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
53, 4sylibr 134 . 2 ((𝜑𝑘𝐴) → DECID 𝑘 ∈ (𝐴𝐵))
6 elun2 3301 . . . . . 6 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
76adantl 277 . . . . 5 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ 𝑘𝐵) → 𝑘 ∈ (𝐴𝐵))
87orcd 733 . . . 4 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ 𝑘𝐵) → (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
98, 4sylibr 134 . . 3 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ 𝑘𝐵) → DECID 𝑘 ∈ (𝐴𝐵))
10 simplr 528 . . . . . . 7 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ 𝑘𝐴)
11 simpr 110 . . . . . . 7 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ 𝑘𝐵)
12 ioran 752 . . . . . . 7 (¬ (𝑘𝐴𝑘𝐵) ↔ (¬ 𝑘𝐴 ∧ ¬ 𝑘𝐵))
1310, 11, 12sylanbrc 417 . . . . . 6 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ (𝑘𝐴𝑘𝐵))
14 elun 3274 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
1513, 14sylnibr 677 . . . . 5 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → ¬ 𝑘 ∈ (𝐴𝐵))
1615olcd 734 . . . 4 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → (𝑘 ∈ (𝐴𝐵) ∨ ¬ 𝑘 ∈ (𝐴𝐵)))
1716, 4sylibr 134 . . 3 (((𝜑 ∧ ¬ 𝑘𝐴) ∧ ¬ 𝑘𝐵) → DECID 𝑘 ∈ (𝐴𝐵))
18 dcun.b . . . . 5 (𝜑DECID 𝑘𝐵)
19 exmiddc 836 . . . . 5 (DECID 𝑘𝐵 → (𝑘𝐵 ∨ ¬ 𝑘𝐵))
2018, 19syl 14 . . . 4 (𝜑 → (𝑘𝐵 ∨ ¬ 𝑘𝐵))
2120adantr 276 . . 3 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘𝐵 ∨ ¬ 𝑘𝐵))
229, 17, 21mpjaodan 798 . 2 ((𝜑 ∧ ¬ 𝑘𝐴) → DECID 𝑘 ∈ (𝐴𝐵))
23 dcun.a . . 3 (𝜑DECID 𝑘𝐴)
24 exmiddc 836 . . 3 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2523, 24syl 14 . 2 (𝜑 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
265, 22, 25mpjaodan 798 1 (𝜑DECID 𝑘 ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834  wcel 2146  cun 3125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140
This theorem is referenced by:  sumsplitdc  11406
  Copyright terms: Public domain W3C validator