ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcun GIF version

Theorem dcun 3601
Description: The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.) (Revised by Jim Kingdon, 13-Oct-2025.)
Hypotheses
Ref Expression
dcun.a (𝜑DECID 𝐶𝐴)
dcun.b (𝜑DECID 𝐶𝐵)
Assertion
Ref Expression
dcun (𝜑DECID 𝐶 ∈ (𝐴𝐵))

Proof of Theorem dcun
StepHypRef Expression
1 elun1 3371 . . . . 5 (𝐶𝐴𝐶 ∈ (𝐴𝐵))
21adantl 277 . . . 4 ((𝜑𝐶𝐴) → 𝐶 ∈ (𝐴𝐵))
32orcd 738 . . 3 ((𝜑𝐶𝐴) → (𝐶 ∈ (𝐴𝐵) ∨ ¬ 𝐶 ∈ (𝐴𝐵)))
4 df-dc 840 . . 3 (DECID 𝐶 ∈ (𝐴𝐵) ↔ (𝐶 ∈ (𝐴𝐵) ∨ ¬ 𝐶 ∈ (𝐴𝐵)))
53, 4sylibr 134 . 2 ((𝜑𝐶𝐴) → DECID 𝐶 ∈ (𝐴𝐵))
6 elun2 3372 . . . . . 6 (𝐶𝐵𝐶 ∈ (𝐴𝐵))
76adantl 277 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ 𝐶𝐵) → 𝐶 ∈ (𝐴𝐵))
87orcd 738 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ 𝐶𝐵) → (𝐶 ∈ (𝐴𝐵) ∨ ¬ 𝐶 ∈ (𝐴𝐵)))
98, 4sylibr 134 . . 3 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ 𝐶𝐵) → DECID 𝐶 ∈ (𝐴𝐵))
10 simplr 528 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐴)
11 simpr 110 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
12 ioran 757 . . . . . . 7 (¬ (𝐶𝐴𝐶𝐵) ↔ (¬ 𝐶𝐴 ∧ ¬ 𝐶𝐵))
1310, 11, 12sylanbrc 417 . . . . . 6 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ ¬ 𝐶𝐵) → ¬ (𝐶𝐴𝐶𝐵))
14 elun 3345 . . . . . 6 (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴𝐶𝐵))
1513, 14sylnibr 681 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ ¬ 𝐶𝐵) → ¬ 𝐶 ∈ (𝐴𝐵))
1615olcd 739 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ ¬ 𝐶𝐵) → (𝐶 ∈ (𝐴𝐵) ∨ ¬ 𝐶 ∈ (𝐴𝐵)))
1716, 4sylibr 134 . . 3 (((𝜑 ∧ ¬ 𝐶𝐴) ∧ ¬ 𝐶𝐵) → DECID 𝐶 ∈ (𝐴𝐵))
18 dcun.b . . . . 5 (𝜑DECID 𝐶𝐵)
19 exmiddc 841 . . . . 5 (DECID 𝐶𝐵 → (𝐶𝐵 ∨ ¬ 𝐶𝐵))
2018, 19syl 14 . . . 4 (𝜑 → (𝐶𝐵 ∨ ¬ 𝐶𝐵))
2120adantr 276 . . 3 ((𝜑 ∧ ¬ 𝐶𝐴) → (𝐶𝐵 ∨ ¬ 𝐶𝐵))
229, 17, 21mpjaodan 803 . 2 ((𝜑 ∧ ¬ 𝐶𝐴) → DECID 𝐶 ∈ (𝐴𝐵))
23 dcun.a . . 3 (𝜑DECID 𝐶𝐴)
24 exmiddc 841 . . 3 (DECID 𝐶𝐴 → (𝐶𝐴 ∨ ¬ 𝐶𝐴))
2523, 24syl 14 . 2 (𝜑 → (𝐶𝐴 ∨ ¬ 𝐶𝐴))
265, 22, 25mpjaodan 803 1 (𝜑DECID 𝐶 ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  wcel 2200  cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  tpfidceq  7100  sumsplitdc  11951
  Copyright terms: Public domain W3C validator