Proof of Theorem dcun
Step | Hyp | Ref
| Expression |
1 | | elun1 3289 |
. . . . 5
⊢ (𝑘 ∈ 𝐴 → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
2 | 1 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
3 | 2 | orcd 723 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
4 | | df-dc 825 |
. . 3
⊢
(DECID 𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) |
6 | | elun2 3290 |
. . . . . 6
⊢ (𝑘 ∈ 𝐵 → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
7 | 6 | adantl 275 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
8 | 7 | orcd 723 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
9 | 8, 4 | sylibr 133 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) |
10 | | simplr 520 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ 𝐴) |
11 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ 𝐵) |
12 | | ioran 742 |
. . . . . . 7
⊢ (¬
(𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵) ↔ (¬ 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝐵)) |
13 | 10, 11, 12 | sylanbrc 414 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 ∈ 𝐵) → ¬ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
14 | | elun 3263 |
. . . . . 6
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
15 | 13, 14 | sylnibr 667 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ (𝐴 ∪ 𝐵)) |
16 | 15 | olcd 724 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 ∈ 𝐵) → (𝑘 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
17 | 16, 4 | sylibr 133 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) |
18 | | dcun.b |
. . . . 5
⊢ (𝜑 → DECID 𝑘 ∈ 𝐵) |
19 | | exmiddc 826 |
. . . . 5
⊢
(DECID 𝑘 ∈ 𝐵 → (𝑘 ∈ 𝐵 ∨ ¬ 𝑘 ∈ 𝐵)) |
20 | 18, 19 | syl 14 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐵 ∨ ¬ 𝑘 ∈ 𝐵)) |
21 | 20 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐵 ∨ ¬ 𝑘 ∈ 𝐵)) |
22 | 9, 17, 21 | mpjaodan 788 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) |
23 | | dcun.a |
. . 3
⊢ (𝜑 → DECID 𝑘 ∈ 𝐴) |
24 | | exmiddc 826 |
. . 3
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
25 | 23, 24 | syl 14 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
26 | 5, 22, 25 | mpjaodan 788 |
1
⊢ (𝜑 → DECID 𝑘 ∈ (𝐴 ∪ 𝐵)) |