Proof of Theorem dcun
| Step | Hyp | Ref
| Expression |
| 1 | | elun1 3330 |
. . . . 5
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 2 | 1 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 3 | 2 | orcd 734 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝐶 ∈ (𝐴 ∪ 𝐵))) |
| 4 | | df-dc 836 |
. . 3
⊢
(DECID 𝐶 ∈ (𝐴 ∪ 𝐵) ↔ (𝐶 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝐶 ∈ (𝐴 ∪ 𝐵))) |
| 5 | 3, 4 | sylibr 134 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 6 | | elun2 3331 |
. . . . . 6
⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 7 | 6 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 8 | 7 | orcd 734 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝐶 ∈ (𝐴 ∪ 𝐵))) |
| 9 | 8, 4 | sylibr 134 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ 𝐶 ∈ 𝐵) → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 10 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐴) |
| 11 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐵) |
| 12 | | ioran 753 |
. . . . . . 7
⊢ (¬
(𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵) ↔ (¬ 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵)) |
| 13 | 10, 11, 12 | sylanbrc 417 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ (𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵)) |
| 14 | | elun 3304 |
. . . . . 6
⊢ (𝐶 ∈ (𝐴 ∪ 𝐵) ↔ (𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵)) |
| 15 | 13, 14 | sylnibr 678 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 16 | 15 | olcd 735 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐶 ∈ (𝐴 ∪ 𝐵) ∨ ¬ 𝐶 ∈ (𝐴 ∪ 𝐵))) |
| 17 | 16, 4 | sylibr 134 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ∈ 𝐵) → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 18 | | dcun.b |
. . . . 5
⊢ (𝜑 → DECID 𝐶 ∈ 𝐵) |
| 19 | | exmiddc 837 |
. . . . 5
⊢
(DECID 𝐶 ∈ 𝐵 → (𝐶 ∈ 𝐵 ∨ ¬ 𝐶 ∈ 𝐵)) |
| 20 | 18, 19 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐶 ∈ 𝐵 ∨ ¬ 𝐶 ∈ 𝐵)) |
| 21 | 20 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) → (𝐶 ∈ 𝐵 ∨ ¬ 𝐶 ∈ 𝐵)) |
| 22 | 9, 17, 21 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝐴) → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) |
| 23 | | dcun.a |
. . 3
⊢ (𝜑 → DECID 𝐶 ∈ 𝐴) |
| 24 | | exmiddc 837 |
. . 3
⊢
(DECID 𝐶 ∈ 𝐴 → (𝐶 ∈ 𝐴 ∨ ¬ 𝐶 ∈ 𝐴)) |
| 25 | 23, 24 | syl 14 |
. 2
⊢ (𝜑 → (𝐶 ∈ 𝐴 ∨ ¬ 𝐶 ∈ 𝐴)) |
| 26 | 5, 22, 25 | mpjaodan 799 |
1
⊢ (𝜑 → DECID 𝐶 ∈ (𝐴 ∪ 𝐵)) |