ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc Unicode version

Theorem sumsplitdc 10822
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1  |-  Z  =  ( ZZ>= `  M )
sumsplit.2  |-  ( ph  ->  M  e.  ZZ )
sumsplit.3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
sumsplit.4  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
sumsplitdc.a  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
sumsplitdc.b  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  B
)
sumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
sumsplit.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
sumsplit.7  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
sumsplit.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
sumsplit.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
sumsplitdc  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hint:    C( k)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
2 sumsplitdc.a . . . . 5  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
3 sumsplitdc.b . . . . 5  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  B
)
42, 3dcun 3392 . . . 4  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  ( A  u.  B )
)
54ralrimiva 2446 . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  ( A  u.  B
) )
6 sumsplit.7 . . . 4  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
76ralrimiva 2446 . . 3  |-  ( ph  ->  A. k  e.  ( A  u.  B ) C  e.  CC )
8 sumsplit.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 sumsplit.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3080 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2154 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 131 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 687 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 781 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 132 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716adantl 271 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  Z
)
1817ralrimiva 2446 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1123 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 687 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 5, 7, 20isumss2 10781 . 2  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  sum_ k  e.  Z  if (
k  e.  ( A  u.  B ) ,  C ,  0 ) )
22 sumsplit.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
23 elun1 3167 . . . . . . 7  |-  ( k  e.  A  ->  k  e.  ( A  u.  B
) )
2423, 6sylan2 280 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2524adantlr 461 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  C  e.  CC )
26 0cnd 7479 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  CC )
2725, 26, 2ifcldadc 3420 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
28 sumsplit.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
29 elun2 3168 . . . . . . 7  |-  ( k  e.  B  ->  k  e.  ( A  u.  B
) )
3029, 6sylan2 280 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
3130adantlr 461 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  B )  ->  C  e.  CC )
32 0cnd 7479 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  B )  ->  0  e.  CC )
3331, 32, 3ifcldadc 3420 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
34 sumsplit.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
35 sumsplit.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
369, 8, 22, 27, 28, 33, 34, 35isumadd 10821 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
3724addid1d 7629 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
38 iftrue 3398 . . . . . . . . 9  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
3938adantl 271 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
40 noel 3290 . . . . . . . . . . . 12  |-  -.  k  e.  (/)
41 elin 3183 . . . . . . . . . . . . 13  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
42 sumsplit.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
4342eleq2d 2157 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
4441, 43syl5rbbr 193 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
4540, 44mtbii 634 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
46 imnan 659 . . . . . . . . . . 11  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
4745, 46sylibr 132 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4847imp 122 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
4948iffalsed 3403 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
5039, 49oveq12d 5670 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
51 iftrue 3398 . . . . . . . . 9  |-  ( k  e.  ( A  u.  B )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5223, 51syl 14 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5352adantl 271 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5437, 50, 533eqtr4rd 2131 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5554adantlr 461 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5633adantr 270 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
5756addid2d 7630 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  ( 0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
58 iffalse 3401 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
5958adantl 271 . . . . . . . 8  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
6059oveq1d 5667 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  if ( k  e.  B ,  C , 
0 ) ) )
6160adantlr 461 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  ( 0  +  if ( k  e.  B ,  C ,  0 ) ) )
62 biorf 698 . . . . . . . . . 10  |-  ( -.  k  e.  A  -> 
( k  e.  B  <->  ( k  e.  A  \/  k  e.  B )
) )
63 elun 3141 . . . . . . . . . 10  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
6462, 63syl6rbbr 197 . . . . . . . . 9  |-  ( -.  k  e.  A  -> 
( k  e.  ( A  u.  B )  <-> 
k  e.  B ) )
6564adantl 271 . . . . . . . 8  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
k  e.  ( A  u.  B )  <->  k  e.  B ) )
6665ifbid 3412 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  if ( k  e.  B ,  C ,  0 ) )
6766adantlr 461 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  if ( k  e.  B ,  C ,  0 ) )
6857, 61, 673eqtr4rd 2131 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
69 exmiddc 782 . . . . . 6  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
702, 69syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
7155, 68, 70mpjaodan 747 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
7271sumeq2dv 10753 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  sum_ k  e.  Z  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
731unssad 3177 . . . . 5  |-  ( ph  ->  A  C_  Z )
742ralrimiva 2446 . . . . 5  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
7524ralrimiva 2446 . . . . 5  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
7673, 74, 75, 20isumss2 10781 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
771unssbd 3178 . . . . 5  |-  ( ph  ->  B  C_  Z )
783ralrimiva 2446 . . . . 5  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  B )
7930ralrimiva 2446 . . . . 5  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
8077, 78, 79, 20isumss2 10781 . . . 4  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
8176, 80oveq12d 5670 . . 3  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
8236, 72, 813eqtr4rd 2131 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  = 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
8321, 82eqtr4d 2123 1  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664  DECID wdc 780    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359    u. cun 2997    i^i cin 2998    C_ wss 2999   (/)c0 3286   ifcif 3393   dom cdm 4438   ` cfv 5015  (class class class)co 5652   Fincfn 6455   CCcc 7346   0cc0 7348    + caddc 7351   ZZcz 8748   ZZ>=cuz 9017    seqcseq 9848    ~~> cli 10662   sum_csu 10738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6290  df-en 6456  df-dom 6457  df-fin 6458  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-q 9103  df-rp 9133  df-fz 9423  df-fzo 9550  df-iseq 9849  df-seq3 9850  df-exp 9951  df-ihash 10180  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428  df-clim 10663  df-isum 10739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator