| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumsplitdc | Unicode version | ||
| Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| sumsplit.1 |
|
| sumsplit.2 |
|
| sumsplit.3 |
|
| sumsplit.4 |
|
| sumsplitdc.a |
|
| sumsplitdc.b |
|
| sumsplit.5 |
|
| sumsplit.6 |
|
| sumsplit.7 |
|
| sumsplit.8 |
|
| sumsplit.9 |
|
| Ref | Expression |
|---|---|
| sumsplitdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumsplit.4 |
. . 3
| |
| 2 | sumsplitdc.a |
. . . . 5
| |
| 3 | sumsplitdc.b |
. . . . 5
| |
| 4 | 2, 3 | dcun 3578 |
. . . 4
|
| 5 | 4 | ralrimiva 2581 |
. . 3
|
| 6 | sumsplit.7 |
. . . 4
| |
| 7 | 6 | ralrimiva 2581 |
. . 3
|
| 8 | sumsplit.2 |
. . . . 5
| |
| 9 | sumsplit.1 |
. . . . . . 7
| |
| 10 | 9 | eqimssi 3257 |
. . . . . 6
|
| 11 | 10 | a1i 9 |
. . . . 5
|
| 12 | 9 | eleq2i 2274 |
. . . . . . . . . 10
|
| 13 | 12 | biimpri 133 |
. . . . . . . . 9
|
| 14 | 13 | orcd 735 |
. . . . . . . 8
|
| 15 | df-dc 837 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylibr 134 |
. . . . . . 7
|
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | 17 | ralrimiva 2581 |
. . . . 5
|
| 19 | 8, 11, 18 | 3jca 1180 |
. . . 4
|
| 20 | 19 | orcd 735 |
. . 3
|
| 21 | 1, 5, 7, 20 | isumss2 11819 |
. 2
|
| 22 | sumsplit.5 |
. . . 4
| |
| 23 | elun1 3348 |
. . . . . . 7
| |
| 24 | 23, 6 | sylan2 286 |
. . . . . 6
|
| 25 | 24 | adantlr 477 |
. . . . 5
|
| 26 | 0cnd 8100 |
. . . . 5
| |
| 27 | 25, 26, 2 | ifcldadc 3609 |
. . . 4
|
| 28 | sumsplit.6 |
. . . 4
| |
| 29 | elun2 3349 |
. . . . . . 7
| |
| 30 | 29, 6 | sylan2 286 |
. . . . . 6
|
| 31 | 30 | adantlr 477 |
. . . . 5
|
| 32 | 0cnd 8100 |
. . . . 5
| |
| 33 | 31, 32, 3 | ifcldadc 3609 |
. . . 4
|
| 34 | sumsplit.8 |
. . . 4
| |
| 35 | sumsplit.9 |
. . . 4
| |
| 36 | 9, 8, 22, 27, 28, 33, 34, 35 | isumadd 11857 |
. . 3
|
| 37 | 24 | addridd 8256 |
. . . . . . 7
|
| 38 | iftrue 3584 |
. . . . . . . . 9
| |
| 39 | 38 | adantl 277 |
. . . . . . . 8
|
| 40 | noel 3472 |
. . . . . . . . . . . 12
| |
| 41 | sumsplit.3 |
. . . . . . . . . . . . . 14
| |
| 42 | 41 | eleq2d 2277 |
. . . . . . . . . . . . 13
|
| 43 | elin 3364 |
. . . . . . . . . . . . 13
| |
| 44 | 42, 43 | bitr3di 195 |
. . . . . . . . . . . 12
|
| 45 | 40, 44 | mtbii 676 |
. . . . . . . . . . 11
|
| 46 | imnan 692 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | sylibr 134 |
. . . . . . . . . 10
|
| 48 | 47 | imp 124 |
. . . . . . . . 9
|
| 49 | 48 | iffalsed 3589 |
. . . . . . . 8
|
| 50 | 39, 49 | oveq12d 5985 |
. . . . . . 7
|
| 51 | iftrue 3584 |
. . . . . . . . 9
| |
| 52 | 23, 51 | syl 14 |
. . . . . . . 8
|
| 53 | 52 | adantl 277 |
. . . . . . 7
|
| 54 | 37, 50, 53 | 3eqtr4rd 2251 |
. . . . . 6
|
| 55 | 54 | adantlr 477 |
. . . . 5
|
| 56 | 33 | adantr 276 |
. . . . . . 7
|
| 57 | 56 | addlidd 8257 |
. . . . . 6
|
| 58 | iffalse 3587 |
. . . . . . . . 9
| |
| 59 | 58 | adantl 277 |
. . . . . . . 8
|
| 60 | 59 | oveq1d 5982 |
. . . . . . 7
|
| 61 | 60 | adantlr 477 |
. . . . . 6
|
| 62 | elun 3322 |
. . . . . . . . . 10
| |
| 63 | biorf 746 |
. . . . . . . . . 10
| |
| 64 | 62, 63 | bitr4id 199 |
. . . . . . . . 9
|
| 65 | 64 | adantl 277 |
. . . . . . . 8
|
| 66 | 65 | ifbid 3601 |
. . . . . . 7
|
| 67 | 66 | adantlr 477 |
. . . . . 6
|
| 68 | 57, 61, 67 | 3eqtr4rd 2251 |
. . . . 5
|
| 69 | exmiddc 838 |
. . . . . 6
| |
| 70 | 2, 69 | syl 14 |
. . . . 5
|
| 71 | 55, 68, 70 | mpjaodan 800 |
. . . 4
|
| 72 | 71 | sumeq2dv 11794 |
. . 3
|
| 73 | 1 | unssad 3358 |
. . . . 5
|
| 74 | 2 | ralrimiva 2581 |
. . . . 5
|
| 75 | 24 | ralrimiva 2581 |
. . . . 5
|
| 76 | 73, 74, 75, 20 | isumss2 11819 |
. . . 4
|
| 77 | 1 | unssbd 3359 |
. . . . 5
|
| 78 | 3 | ralrimiva 2581 |
. . . . 5
|
| 79 | 30 | ralrimiva 2581 |
. . . . 5
|
| 80 | 77, 78, 79, 20 | isumss2 11819 |
. . . 4
|
| 81 | 76, 80 | oveq12d 5985 |
. . 3
|
| 82 | 36, 72, 81 | 3eqtr4rd 2251 |
. 2
|
| 83 | 21, 82 | eqtr4d 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |