ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc Unicode version

Theorem sumsplitdc 11373
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1  |-  Z  =  ( ZZ>= `  M )
sumsplit.2  |-  ( ph  ->  M  e.  ZZ )
sumsplit.3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
sumsplit.4  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
sumsplitdc.a  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
sumsplitdc.b  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  B
)
sumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
sumsplit.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
sumsplit.7  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
sumsplit.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
sumsplit.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
sumsplitdc  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hint:    C( k)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
2 sumsplitdc.a . . . . 5  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
3 sumsplitdc.b . . . . 5  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  B
)
42, 3dcun 3519 . . . 4  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  ( A  u.  B )
)
54ralrimiva 2539 . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  ( A  u.  B
) )
6 sumsplit.7 . . . 4  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
76ralrimiva 2539 . . 3  |-  ( ph  ->  A. k  e.  ( A  u.  B ) C  e.  CC )
8 sumsplit.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 sumsplit.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3198 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2233 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 132 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 723 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 825 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  Z
)
1817ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1167 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 723 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 5, 7, 20isumss2 11334 . 2  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  sum_ k  e.  Z  if (
k  e.  ( A  u.  B ) ,  C ,  0 ) )
22 sumsplit.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
23 elun1 3289 . . . . . . 7  |-  ( k  e.  A  ->  k  e.  ( A  u.  B
) )
2423, 6sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2524adantlr 469 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  C  e.  CC )
26 0cnd 7892 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  CC )
2725, 26, 2ifcldadc 3549 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
28 sumsplit.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
29 elun2 3290 . . . . . . 7  |-  ( k  e.  B  ->  k  e.  ( A  u.  B
) )
3029, 6sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
3130adantlr 469 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  B )  ->  C  e.  CC )
32 0cnd 7892 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  B )  ->  0  e.  CC )
3331, 32, 3ifcldadc 3549 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
34 sumsplit.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
35 sumsplit.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
369, 8, 22, 27, 28, 33, 34, 35isumadd 11372 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
3724addid1d 8047 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
38 iftrue 3525 . . . . . . . . 9  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
3938adantl 275 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
40 noel 3413 . . . . . . . . . . . 12  |-  -.  k  e.  (/)
41 sumsplit.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
4241eleq2d 2236 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
43 elin 3305 . . . . . . . . . . . . 13  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
4442, 43bitr3di 194 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
4540, 44mtbii 664 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
46 imnan 680 . . . . . . . . . . 11  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
4745, 46sylibr 133 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4847imp 123 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
4948iffalsed 3530 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
5039, 49oveq12d 5860 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
51 iftrue 3525 . . . . . . . . 9  |-  ( k  e.  ( A  u.  B )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5223, 51syl 14 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5352adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5437, 50, 533eqtr4rd 2209 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5554adantlr 469 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5633adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
5756addid2d 8048 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  ( 0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
58 iffalse 3528 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
5958adantl 275 . . . . . . . 8  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
6059oveq1d 5857 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  if ( k  e.  B ,  C , 
0 ) ) )
6160adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  ( 0  +  if ( k  e.  B ,  C ,  0 ) ) )
62 elun 3263 . . . . . . . . . 10  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
63 biorf 734 . . . . . . . . . 10  |-  ( -.  k  e.  A  -> 
( k  e.  B  <->  ( k  e.  A  \/  k  e.  B )
) )
6462, 63bitr4id 198 . . . . . . . . 9  |-  ( -.  k  e.  A  -> 
( k  e.  ( A  u.  B )  <-> 
k  e.  B ) )
6564adantl 275 . . . . . . . 8  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
k  e.  ( A  u.  B )  <->  k  e.  B ) )
6665ifbid 3541 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  if ( k  e.  B ,  C ,  0 ) )
6766adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  if ( k  e.  B ,  C ,  0 ) )
6857, 61, 673eqtr4rd 2209 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
69 exmiddc 826 . . . . . 6  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
702, 69syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
7155, 68, 70mpjaodan 788 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
7271sumeq2dv 11309 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  sum_ k  e.  Z  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
731unssad 3299 . . . . 5  |-  ( ph  ->  A  C_  Z )
742ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
7524ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
7673, 74, 75, 20isumss2 11334 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
771unssbd 3300 . . . . 5  |-  ( ph  ->  B  C_  Z )
783ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  B )
7930ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
8077, 78, 79, 20isumss2 11334 . . . 4  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
8176, 80oveq12d 5860 . . 3  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
8236, 72, 813eqtr4rd 2209 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  = 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
8321, 82eqtr4d 2201 1  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   ifcif 3520   dom cdm 4604   ` cfv 5188  (class class class)co 5842   Fincfn 6706   CCcc 7751   0cc0 7753    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator