| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumsplitdc | Unicode version | ||
| Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| sumsplit.1 |
|
| sumsplit.2 |
|
| sumsplit.3 |
|
| sumsplit.4 |
|
| sumsplitdc.a |
|
| sumsplitdc.b |
|
| sumsplit.5 |
|
| sumsplit.6 |
|
| sumsplit.7 |
|
| sumsplit.8 |
|
| sumsplit.9 |
|
| Ref | Expression |
|---|---|
| sumsplitdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumsplit.4 |
. . 3
| |
| 2 | sumsplitdc.a |
. . . . 5
| |
| 3 | sumsplitdc.b |
. . . . 5
| |
| 4 | 2, 3 | dcun 3561 |
. . . 4
|
| 5 | 4 | ralrimiva 2570 |
. . 3
|
| 6 | sumsplit.7 |
. . . 4
| |
| 7 | 6 | ralrimiva 2570 |
. . 3
|
| 8 | sumsplit.2 |
. . . . 5
| |
| 9 | sumsplit.1 |
. . . . . . 7
| |
| 10 | 9 | eqimssi 3240 |
. . . . . 6
|
| 11 | 10 | a1i 9 |
. . . . 5
|
| 12 | 9 | eleq2i 2263 |
. . . . . . . . . 10
|
| 13 | 12 | biimpri 133 |
. . . . . . . . 9
|
| 14 | 13 | orcd 734 |
. . . . . . . 8
|
| 15 | df-dc 836 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylibr 134 |
. . . . . . 7
|
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | 17 | ralrimiva 2570 |
. . . . 5
|
| 19 | 8, 11, 18 | 3jca 1179 |
. . . 4
|
| 20 | 19 | orcd 734 |
. . 3
|
| 21 | 1, 5, 7, 20 | isumss2 11575 |
. 2
|
| 22 | sumsplit.5 |
. . . 4
| |
| 23 | elun1 3331 |
. . . . . . 7
| |
| 24 | 23, 6 | sylan2 286 |
. . . . . 6
|
| 25 | 24 | adantlr 477 |
. . . . 5
|
| 26 | 0cnd 8036 |
. . . . 5
| |
| 27 | 25, 26, 2 | ifcldadc 3591 |
. . . 4
|
| 28 | sumsplit.6 |
. . . 4
| |
| 29 | elun2 3332 |
. . . . . . 7
| |
| 30 | 29, 6 | sylan2 286 |
. . . . . 6
|
| 31 | 30 | adantlr 477 |
. . . . 5
|
| 32 | 0cnd 8036 |
. . . . 5
| |
| 33 | 31, 32, 3 | ifcldadc 3591 |
. . . 4
|
| 34 | sumsplit.8 |
. . . 4
| |
| 35 | sumsplit.9 |
. . . 4
| |
| 36 | 9, 8, 22, 27, 28, 33, 34, 35 | isumadd 11613 |
. . 3
|
| 37 | 24 | addridd 8192 |
. . . . . . 7
|
| 38 | iftrue 3567 |
. . . . . . . . 9
| |
| 39 | 38 | adantl 277 |
. . . . . . . 8
|
| 40 | noel 3455 |
. . . . . . . . . . . 12
| |
| 41 | sumsplit.3 |
. . . . . . . . . . . . . 14
| |
| 42 | 41 | eleq2d 2266 |
. . . . . . . . . . . . 13
|
| 43 | elin 3347 |
. . . . . . . . . . . . 13
| |
| 44 | 42, 43 | bitr3di 195 |
. . . . . . . . . . . 12
|
| 45 | 40, 44 | mtbii 675 |
. . . . . . . . . . 11
|
| 46 | imnan 691 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | sylibr 134 |
. . . . . . . . . 10
|
| 48 | 47 | imp 124 |
. . . . . . . . 9
|
| 49 | 48 | iffalsed 3572 |
. . . . . . . 8
|
| 50 | 39, 49 | oveq12d 5943 |
. . . . . . 7
|
| 51 | iftrue 3567 |
. . . . . . . . 9
| |
| 52 | 23, 51 | syl 14 |
. . . . . . . 8
|
| 53 | 52 | adantl 277 |
. . . . . . 7
|
| 54 | 37, 50, 53 | 3eqtr4rd 2240 |
. . . . . 6
|
| 55 | 54 | adantlr 477 |
. . . . 5
|
| 56 | 33 | adantr 276 |
. . . . . . 7
|
| 57 | 56 | addlidd 8193 |
. . . . . 6
|
| 58 | iffalse 3570 |
. . . . . . . . 9
| |
| 59 | 58 | adantl 277 |
. . . . . . . 8
|
| 60 | 59 | oveq1d 5940 |
. . . . . . 7
|
| 61 | 60 | adantlr 477 |
. . . . . 6
|
| 62 | elun 3305 |
. . . . . . . . . 10
| |
| 63 | biorf 745 |
. . . . . . . . . 10
| |
| 64 | 62, 63 | bitr4id 199 |
. . . . . . . . 9
|
| 65 | 64 | adantl 277 |
. . . . . . . 8
|
| 66 | 65 | ifbid 3583 |
. . . . . . 7
|
| 67 | 66 | adantlr 477 |
. . . . . 6
|
| 68 | 57, 61, 67 | 3eqtr4rd 2240 |
. . . . 5
|
| 69 | exmiddc 837 |
. . . . . 6
| |
| 70 | 2, 69 | syl 14 |
. . . . 5
|
| 71 | 55, 68, 70 | mpjaodan 799 |
. . . 4
|
| 72 | 71 | sumeq2dv 11550 |
. . 3
|
| 73 | 1 | unssad 3341 |
. . . . 5
|
| 74 | 2 | ralrimiva 2570 |
. . . . 5
|
| 75 | 24 | ralrimiva 2570 |
. . . . 5
|
| 76 | 73, 74, 75, 20 | isumss2 11575 |
. . . 4
|
| 77 | 1 | unssbd 3342 |
. . . . 5
|
| 78 | 3 | ralrimiva 2570 |
. . . . 5
|
| 79 | 30 | ralrimiva 2570 |
. . . . 5
|
| 80 | 77, 78, 79, 20 | isumss2 11575 |
. . . 4
|
| 81 | 76, 80 | oveq12d 5943 |
. . 3
|
| 82 | 36, 72, 81 | 3eqtr4rd 2240 |
. 2
|
| 83 | 21, 82 | eqtr4d 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |