ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc Unicode version

Theorem sumsplitdc 11408
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1  |-  Z  =  ( ZZ>= `  M )
sumsplit.2  |-  ( ph  ->  M  e.  ZZ )
sumsplit.3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
sumsplit.4  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
sumsplitdc.a  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
sumsplitdc.b  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  B
)
sumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
sumsplit.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
sumsplit.7  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
sumsplit.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
sumsplit.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
sumsplitdc  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hint:    C( k)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
2 sumsplitdc.a . . . . 5  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  A
)
3 sumsplitdc.b . . . . 5  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  B
)
42, 3dcun 3531 . . . 4  |-  ( (
ph  /\  k  e.  Z )  -> DECID  k  e.  ( A  u.  B )
)
54ralrimiva 2548 . . 3  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  ( A  u.  B
) )
6 sumsplit.7 . . . 4  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
76ralrimiva 2548 . . 3  |-  ( ph  ->  A. k  e.  ( A  u.  B ) C  e.  CC )
8 sumsplit.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9 sumsplit.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
109eqimssi 3209 . . . . . 6  |-  Z  C_  ( ZZ>= `  M )
1110a1i 9 . . . . 5  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
129eleq2i 2242 . . . . . . . . . 10  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1312biimpri 133 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1413orcd 733 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  Z  \/  -.  k  e.  Z )
)
15 df-dc 835 . . . . . . . 8  |-  (DECID  k  e.  Z  <->  ( k  e.  Z  \/  -.  k  e.  Z ) )
1614, 15sylibr 134 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  -> DECID  k  e.  Z
)
1716adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  Z
)
1817ralrimiva 2548 . . . . 5  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )
198, 11, 183jca 1177 . . . 4  |-  ( ph  ->  ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  ( ZZ>= `  M )DECID  k  e.  Z ) )
2019orcd 733 . . 3  |-  ( ph  ->  ( ( M  e.  ZZ  /\  Z  C_  ( ZZ>= `  M )  /\  A. k  e.  (
ZZ>= `  M )DECID  k  e.  Z )  \/  Z  e.  Fin ) )
211, 5, 7, 20isumss2 11369 . 2  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  sum_ k  e.  Z  if (
k  e.  ( A  u.  B ) ,  C ,  0 ) )
22 sumsplit.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
23 elun1 3300 . . . . . . 7  |-  ( k  e.  A  ->  k  e.  ( A  u.  B
) )
2423, 6sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2524adantlr 477 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  C  e.  CC )
26 0cnd 7925 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  0  e.  CC )
2725, 26, 2ifcldadc 3561 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
28 sumsplit.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
29 elun2 3301 . . . . . . 7  |-  ( k  e.  B  ->  k  e.  ( A  u.  B
) )
3029, 6sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
3130adantlr 477 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  B )  ->  C  e.  CC )
32 0cnd 7925 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  B )  ->  0  e.  CC )
3331, 32, 3ifcldadc 3561 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
34 sumsplit.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
35 sumsplit.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
369, 8, 22, 27, 28, 33, 34, 35isumadd 11407 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
3724addid1d 8080 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
38 iftrue 3537 . . . . . . . . 9  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
3938adantl 277 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
40 noel 3424 . . . . . . . . . . . 12  |-  -.  k  e.  (/)
41 sumsplit.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
4241eleq2d 2245 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
43 elin 3316 . . . . . . . . . . . . 13  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
4442, 43bitr3di 195 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
4540, 44mtbii 674 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
46 imnan 690 . . . . . . . . . . 11  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
4745, 46sylibr 134 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4847imp 124 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
4948iffalsed 3542 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
5039, 49oveq12d 5883 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
51 iftrue 3537 . . . . . . . . 9  |-  ( k  e.  ( A  u.  B )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5223, 51syl 14 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5352adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5437, 50, 533eqtr4rd 2219 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5554adantlr 477 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5633adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
5756addid2d 8081 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  ( 0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
58 iffalse 3540 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
5958adantl 277 . . . . . . . 8  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
6059oveq1d 5880 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  if ( k  e.  B ,  C , 
0 ) ) )
6160adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  ( 0  +  if ( k  e.  B ,  C ,  0 ) ) )
62 elun 3274 . . . . . . . . . 10  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
63 biorf 744 . . . . . . . . . 10  |-  ( -.  k  e.  A  -> 
( k  e.  B  <->  ( k  e.  A  \/  k  e.  B )
) )
6462, 63bitr4id 199 . . . . . . . . 9  |-  ( -.  k  e.  A  -> 
( k  e.  ( A  u.  B )  <-> 
k  e.  B ) )
6564adantl 277 . . . . . . . 8  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
k  e.  ( A  u.  B )  <->  k  e.  B ) )
6665ifbid 3553 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  if ( k  e.  B ,  C ,  0 ) )
6766adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  if ( k  e.  B ,  C ,  0 ) )
6857, 61, 673eqtr4rd 2219 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
69 exmiddc 836 . . . . . 6  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
702, 69syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
7155, 68, 70mpjaodan 798 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
7271sumeq2dv 11344 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  sum_ k  e.  Z  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
731unssad 3310 . . . . 5  |-  ( ph  ->  A  C_  Z )
742ralrimiva 2548 . . . . 5  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )
7524ralrimiva 2548 . . . . 5  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
7673, 74, 75, 20isumss2 11369 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
771unssbd 3311 . . . . 5  |-  ( ph  ->  B  C_  Z )
783ralrimiva 2548 . . . . 5  |-  ( ph  ->  A. k  e.  Z DECID  k  e.  B )
7930ralrimiva 2548 . . . . 5  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
8077, 78, 79, 20isumss2 11369 . . . 4  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
8176, 80oveq12d 5883 . . 3  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
8236, 72, 813eqtr4rd 2219 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  = 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
8321, 82eqtr4d 2211 1  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453    u. cun 3125    i^i cin 3126    C_ wss 3127   (/)c0 3420   ifcif 3532   dom cdm 4620   ` cfv 5208  (class class class)co 5865   Fincfn 6730   CCcc 7784   0cc0 7786    + caddc 7789   ZZcz 9226   ZZ>=cuz 9501    seqcseq 10415    ~~> cli 11254   sum_csu 11329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-fz 9980  df-fzo 10113  df-seqfrec 10416  df-exp 10490  df-ihash 10724  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255  df-sumdc 11330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator