ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 Unicode version

Theorem elun2 3327
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3323 . 2  |-  B  C_  ( C  u.  B
)
21sseli 3175 1  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    u. cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  dcun  3556  exmidundif  4235  exmidundifim  4236  dftpos4  6316  tfrlemibxssdm  6380  tfrlemi14d  6386  tfr1onlembxssdm  6396  tfr1onlemres  6402  tfrcllembxssdm  6409  tfrcllemres  6415  dcdifsnid  6557  findcard2d  6947  findcard2sd  6948  onunsnss  6973  undifdcss  6979  fisseneq  6988  fidcenumlemrks  7012  djurclr  7109  djurcl  7111  djuss  7129  finomni  7199  mnfxr  8076  hashinfuni  10848  fsumsplitsnun  11562  sumsplitdc  11575  modfsummodlem1  11599  exmidunben  12583  srnginvld  12767  lmodvscad  12785  ipsscad  12797  ipsvscad  12798  ipsipd  12799
  Copyright terms: Public domain W3C validator