ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 Unicode version

Theorem elun2 3341
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3337 . 2  |-  B  C_  ( C  u.  B
)
21sseli 3189 1  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  dcun  3570  exmidundif  4251  exmidundifim  4252  dftpos4  6351  tfrlemibxssdm  6415  tfrlemi14d  6421  tfr1onlembxssdm  6431  tfr1onlemres  6437  tfrcllembxssdm  6444  tfrcllemres  6450  dcdifsnid  6592  findcard2d  6990  findcard2sd  6991  onunsnss  7016  undifdcss  7022  fisseneq  7033  fidcenumlemrks  7057  djurclr  7154  djurcl  7156  djuss  7174  finomni  7244  mnfxr  8131  hashinfuni  10924  fsumsplitsnun  11763  sumsplitdc  11776  modfsummodlem1  11800  exmidunben  12830  srnginvld  13015  lmodvscad  13033  ipsscad  13045  ipsvscad  13046  ipsipd  13047
  Copyright terms: Public domain W3C validator