![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version |
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
elun2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3204 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3057 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 |
This theorem is referenced by: dcun 3437 exmidundif 4087 exmidundifim 4088 dftpos4 6111 tfrlemibxssdm 6175 tfrlemi14d 6181 tfr1onlembxssdm 6191 tfr1onlemres 6197 tfrcllembxssdm 6204 tfrcllemres 6210 dcdifsnid 6351 findcard2d 6735 findcard2sd 6736 onunsnss 6755 undifdcss 6761 fisseneq 6770 fidcenumlemrks 6790 djurclr 6884 djurcl 6886 djuss 6904 finomni 6959 mnfxr 7739 hashinfuni 10409 fsumsplitsnun 11073 sumsplitdc 11086 modfsummodlem1 11110 exmidunben 11777 srnginvld 11921 lmodvscad 11932 ipsscad 11940 ipsvscad 11941 ipsipd 11942 |
Copyright terms: Public domain | W3C validator |