ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 Unicode version

Theorem elun2 3328
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3324 . 2  |-  B  C_  ( C  u.  B
)
21sseli 3176 1  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    u. cun 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167
This theorem is referenced by:  dcun  3557  exmidundif  4236  exmidundifim  4237  dftpos4  6318  tfrlemibxssdm  6382  tfrlemi14d  6388  tfr1onlembxssdm  6398  tfr1onlemres  6404  tfrcllembxssdm  6411  tfrcllemres  6417  dcdifsnid  6559  findcard2d  6949  findcard2sd  6950  onunsnss  6975  undifdcss  6981  fisseneq  6990  fidcenumlemrks  7014  djurclr  7111  djurcl  7113  djuss  7131  finomni  7201  mnfxr  8078  hashinfuni  10851  fsumsplitsnun  11565  sumsplitdc  11578  modfsummodlem1  11602  exmidunben  12586  srnginvld  12770  lmodvscad  12788  ipsscad  12800  ipsvscad  12801  ipsipd  12802
  Copyright terms: Public domain W3C validator