| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3337 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: dcun 3570 exmidundif 4250 exmidundifim 4251 dftpos4 6349 tfrlemibxssdm 6413 tfrlemi14d 6419 tfr1onlembxssdm 6429 tfr1onlemres 6435 tfrcllembxssdm 6442 tfrcllemres 6448 dcdifsnid 6590 findcard2d 6988 findcard2sd 6989 onunsnss 7014 undifdcss 7020 fisseneq 7031 fidcenumlemrks 7055 djurclr 7152 djurcl 7154 djuss 7172 finomni 7242 mnfxr 8129 hashinfuni 10922 fsumsplitsnun 11730 sumsplitdc 11743 modfsummodlem1 11767 exmidunben 12797 srnginvld 12982 lmodvscad 13000 ipsscad 13012 ipsvscad 13013 ipsipd 13014 |
| Copyright terms: Public domain | W3C validator |