| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3368 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: dcun 3601 exmidundif 4290 exmidundifim 4291 dftpos4 6409 tfrlemibxssdm 6473 tfrlemi14d 6479 tfr1onlembxssdm 6489 tfr1onlemres 6495 tfrcllembxssdm 6502 tfrcllemres 6508 dcdifsnid 6650 findcard2d 7053 findcard2sd 7054 onunsnss 7079 undifdcss 7085 fisseneq 7096 fidcenumlemrks 7120 djurclr 7217 djurcl 7219 djuss 7237 finomni 7307 mnfxr 8203 hashinfuni 10999 fsumsplitsnun 11930 sumsplitdc 11943 modfsummodlem1 11967 exmidunben 12997 bassetsnn 13089 srnginvld 13183 lmodvscad 13201 ipsscad 13213 ipsvscad 13214 ipsipd 13215 |
| Copyright terms: Public domain | W3C validator |