ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 Unicode version

Theorem elun2 3372
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3368 . 2  |-  B  C_  ( C  u.  B
)
21sseli 3220 1  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  dcun  3601  exmidundif  4290  exmidundifim  4291  dftpos4  6409  tfrlemibxssdm  6473  tfrlemi14d  6479  tfr1onlembxssdm  6489  tfr1onlemres  6495  tfrcllembxssdm  6502  tfrcllemres  6508  dcdifsnid  6650  findcard2d  7053  findcard2sd  7054  onunsnss  7079  undifdcss  7085  fisseneq  7096  fidcenumlemrks  7120  djurclr  7217  djurcl  7219  djuss  7237  finomni  7307  mnfxr  8203  hashinfuni  10999  fsumsplitsnun  11930  sumsplitdc  11943  modfsummodlem1  11967  exmidunben  12997  bassetsnn  13089  srnginvld  13183  lmodvscad  13201  ipsscad  13213  ipsvscad  13214  ipsipd  13215
  Copyright terms: Public domain W3C validator