ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 Unicode version

Theorem elun2 3349
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3345 . 2  |-  B  C_  ( C  u.  B
)
21sseli 3197 1  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178    u. cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by:  dcun  3578  exmidundif  4266  exmidundifim  4267  dftpos4  6372  tfrlemibxssdm  6436  tfrlemi14d  6442  tfr1onlembxssdm  6452  tfr1onlemres  6458  tfrcllembxssdm  6465  tfrcllemres  6471  dcdifsnid  6613  findcard2d  7014  findcard2sd  7015  onunsnss  7040  undifdcss  7046  fisseneq  7057  fidcenumlemrks  7081  djurclr  7178  djurcl  7180  djuss  7198  finomni  7268  mnfxr  8164  hashinfuni  10959  fsumsplitsnun  11845  sumsplitdc  11858  modfsummodlem1  11882  exmidunben  12912  srnginvld  13097  lmodvscad  13115  ipsscad  13127  ipsvscad  13128  ipsipd  13129
  Copyright terms: Public domain W3C validator