ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 Unicode version

Theorem elun2 3341
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3337 . 2  |-  B  C_  ( C  u.  B
)
21sseli 3189 1  |-  ( A  e.  B  ->  A  e.  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  dcun  3570  exmidundif  4250  exmidundifim  4251  dftpos4  6349  tfrlemibxssdm  6413  tfrlemi14d  6419  tfr1onlembxssdm  6429  tfr1onlemres  6435  tfrcllembxssdm  6442  tfrcllemres  6448  dcdifsnid  6590  findcard2d  6988  findcard2sd  6989  onunsnss  7014  undifdcss  7020  fisseneq  7031  fidcenumlemrks  7055  djurclr  7152  djurcl  7154  djuss  7172  finomni  7242  mnfxr  8129  hashinfuni  10922  fsumsplitsnun  11730  sumsplitdc  11743  modfsummodlem1  11767  exmidunben  12797  srnginvld  12982  lmodvscad  13000  ipsscad  13012  ipsvscad  13013  ipsipd  13014
  Copyright terms: Public domain W3C validator