![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version |
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
elun2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3299 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3151 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 |
This theorem is referenced by: dcun 3533 exmidundif 4205 exmidundifim 4206 dftpos4 6261 tfrlemibxssdm 6325 tfrlemi14d 6331 tfr1onlembxssdm 6341 tfr1onlemres 6347 tfrcllembxssdm 6354 tfrcllemres 6360 dcdifsnid 6502 findcard2d 6888 findcard2sd 6889 onunsnss 6913 undifdcss 6919 fisseneq 6928 fidcenumlemrks 6949 djurclr 7046 djurcl 7048 djuss 7066 finomni 7135 mnfxr 8010 hashinfuni 10750 fsumsplitsnun 11420 sumsplitdc 11433 modfsummodlem1 11457 exmidunben 12419 srnginvld 12600 lmodvscad 12618 ipsscad 12630 ipsvscad 12631 ipsipd 12632 |
Copyright terms: Public domain | W3C validator |