| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3345 |
. 2
| |
| 2 | 1 | sseli 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: dcun 3578 exmidundif 4266 exmidundifim 4267 dftpos4 6372 tfrlemibxssdm 6436 tfrlemi14d 6442 tfr1onlembxssdm 6452 tfr1onlemres 6458 tfrcllembxssdm 6465 tfrcllemres 6471 dcdifsnid 6613 findcard2d 7014 findcard2sd 7015 onunsnss 7040 undifdcss 7046 fisseneq 7057 fidcenumlemrks 7081 djurclr 7178 djurcl 7180 djuss 7198 finomni 7268 mnfxr 8164 hashinfuni 10959 fsumsplitsnun 11845 sumsplitdc 11858 modfsummodlem1 11882 exmidunben 12912 srnginvld 13097 lmodvscad 13115 ipsscad 13127 ipsvscad 13128 ipsipd 13129 |
| Copyright terms: Public domain | W3C validator |