| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3337 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: dcun 3570 exmidundif 4251 exmidundifim 4252 dftpos4 6351 tfrlemibxssdm 6415 tfrlemi14d 6421 tfr1onlembxssdm 6431 tfr1onlemres 6437 tfrcllembxssdm 6444 tfrcllemres 6450 dcdifsnid 6592 findcard2d 6990 findcard2sd 6991 onunsnss 7016 undifdcss 7022 fisseneq 7033 fidcenumlemrks 7057 djurclr 7154 djurcl 7156 djuss 7174 finomni 7244 mnfxr 8131 hashinfuni 10924 fsumsplitsnun 11763 sumsplitdc 11776 modfsummodlem1 11800 exmidunben 12830 srnginvld 13015 lmodvscad 13033 ipsscad 13045 ipsvscad 13046 ipsipd 13047 |
| Copyright terms: Public domain | W3C validator |