| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3328 |
. 2
| |
| 2 | 1 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: dcun 3561 exmidundif 4240 exmidundifim 4241 dftpos4 6330 tfrlemibxssdm 6394 tfrlemi14d 6400 tfr1onlembxssdm 6410 tfr1onlemres 6416 tfrcllembxssdm 6423 tfrcllemres 6429 dcdifsnid 6571 findcard2d 6961 findcard2sd 6962 onunsnss 6987 undifdcss 6993 fisseneq 7004 fidcenumlemrks 7028 djurclr 7125 djurcl 7127 djuss 7145 finomni 7215 mnfxr 8100 hashinfuni 10886 fsumsplitsnun 11601 sumsplitdc 11614 modfsummodlem1 11638 exmidunben 12668 srnginvld 12852 lmodvscad 12870 ipsscad 12882 ipsvscad 12883 ipsipd 12884 |
| Copyright terms: Public domain | W3C validator |