| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ddifnel | GIF version | ||
| Description: Double complement under universal class. The hypothesis corresponds to stability of membership in 𝐴, which is weaker than decidability (see dcstab 846). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3309) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that 𝐴 is a subset of V ∖ (V ∖ 𝐴), see ddifss 3415. (Contributed by Jim Kingdon, 21-Jul-2018.) |
| Ref | Expression |
|---|---|
| ddifnel.1 | ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| ddifnel | ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ddifnel.1 | . . . 4 ⊢ (¬ 𝑥 ∈ (V ∖ 𝐴) → 𝑥 ∈ 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) → 𝑥 ∈ 𝐴) |
| 3 | elndif 3301 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ (V ∖ 𝐴)) | |
| 4 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | jctil 312 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) |
| 6 | 2, 5 | impbii 126 | . 2 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
| 7 | 6 | difeqri 3297 | 1 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |