ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ddifnel GIF version

Theorem ddifnel 3268
Description: Double complement under universal class. The hypothesis corresponds to stability of membership in 𝐴, which is weaker than decidability (see dcstab 844). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3269) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that 𝐴 is a subset of V ∖ (V ∖ 𝐴), see ddifss 3375. (Contributed by Jim Kingdon, 21-Jul-2018.)
Hypothesis
Ref Expression
ddifnel.1 𝑥 ∈ (V ∖ 𝐴) → 𝑥𝐴)
Assertion
Ref Expression
ddifnel (V ∖ (V ∖ 𝐴)) = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem ddifnel
StepHypRef Expression
1 ddifnel.1 . . . 4 𝑥 ∈ (V ∖ 𝐴) → 𝑥𝐴)
21adantl 277 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) → 𝑥𝐴)
3 elndif 3261 . . . 4 (𝑥𝐴 → ¬ 𝑥 ∈ (V ∖ 𝐴))
4 vex 2742 . . . 4 𝑥 ∈ V
53, 4jctil 312 . . 3 (𝑥𝐴 → (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
62, 5impbii 126 . 2 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)) ↔ 𝑥𝐴)
76difeqri 3257 1 (V ∖ (V ∖ 𝐴)) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  cdif 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator