| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | Unicode version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | jctil.1 |
. 2
| |
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3295 unidif 3872 iunxdif2 3966 exss 4261 reg2exmidlema 4571 limom 4651 xpiindim 4804 relssres 4985 funco 5299 nfunsn 5596 fliftcnv 5845 fo1stresm 6228 fo2ndresm 6229 dftpos3 6329 tfri1d 6402 rdgtfr 6441 rdgruledefgg 6442 frectfr 6467 elixpsn 6803 mapxpen 6918 phplem2 6923 sbthlem2 7033 sbthlemi3 7034 djuss 7145 caseinl 7166 caseinr 7167 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 2omotaplemap 7340 nqprrnd 7627 nqprxx 7630 ltexprlempr 7692 recexprlempr 7716 cauappcvgprlemcl 7737 caucvgprlemcl 7760 caucvgprprlemcl 7788 suplocsrlempr 7891 lemulge11 8910 nn0ge2m1nn 9326 frecfzennn 10535 wrdlenge2n0 10987 reccn2ap 11495 demoivreALT 11956 pcdiv 12496 idghm 13465 subrgid 13855 mulgghm2 14240 topcld 14429 metrest 14826 2lgs 15429 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |