Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctil | Unicode version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | |
jctil.2 |
Ref | Expression |
---|---|
jctil |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | jctil.1 | . 2 | |
4 | 2, 3 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctl 312 ddifnel 3252 unidif 3820 iunxdif2 3913 exss 4204 reg2exmidlema 4510 limom 4590 xpiindim 4740 relssres 4921 funco 5227 nfunsn 5519 fliftcnv 5762 fo1stresm 6126 fo2ndresm 6127 dftpos3 6226 tfri1d 6299 rdgtfr 6338 rdgruledefgg 6339 frectfr 6364 elixpsn 6697 mapxpen 6810 phplem2 6815 sbthlem2 6919 sbthlemi3 6920 djuss 7031 caseinl 7052 caseinr 7053 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 nqprrnd 7480 nqprxx 7483 ltexprlempr 7545 recexprlempr 7569 cauappcvgprlemcl 7590 caucvgprlemcl 7613 caucvgprprlemcl 7641 suplocsrlempr 7744 lemulge11 8757 nn0ge2m1nn 9170 frecfzennn 10357 reccn2ap 11250 demoivreALT 11710 pcdiv 12230 topcld 12709 metrest 13106 pwle2 13838 |
Copyright terms: Public domain | W3C validator |