| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | Unicode version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | jctil.1 |
. 2
| |
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3304 unidif 3882 iunxdif2 3976 exss 4271 reg2exmidlema 4582 limom 4662 xpiindim 4815 relssres 4997 funco 5311 nfunsn 5611 fliftcnv 5864 fo1stresm 6247 fo2ndresm 6248 dftpos3 6348 tfri1d 6421 rdgtfr 6460 rdgruledefgg 6461 frectfr 6486 elixpsn 6822 mapxpen 6945 phplem2 6950 sbthlem2 7060 sbthlemi3 7061 djuss 7172 caseinl 7193 caseinr 7194 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 2omotaplemap 7369 nqprrnd 7656 nqprxx 7659 ltexprlempr 7721 recexprlempr 7745 cauappcvgprlemcl 7766 caucvgprlemcl 7789 caucvgprprlemcl 7817 suplocsrlempr 7920 lemulge11 8939 nn0ge2m1nn 9355 frecfzennn 10571 wrdlenge2n0 11029 swrdnd 11112 reccn2ap 11624 demoivreALT 12085 pcdiv 12625 idghm 13595 subrgid 13985 mulgghm2 14370 topcld 14581 metrest 14978 2lgs 15581 pwle2 15935 |
| Copyright terms: Public domain | W3C validator |