| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | Unicode version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | jctil.1 |
. 2
| |
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3335 unidif 3920 iunxdif2 4014 exss 4313 reg2exmidlema 4626 limom 4706 xpiindim 4859 relssres 5043 funco 5358 nfunsn 5664 fliftcnv 5919 fo1stresm 6307 fo2ndresm 6308 dftpos3 6408 tfri1d 6481 rdgtfr 6520 rdgruledefgg 6521 frectfr 6546 elixpsn 6882 mapxpen 7009 phplem2 7014 sbthlem2 7125 sbthlemi3 7126 djuss 7237 caseinl 7258 caseinr 7259 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 2omotaplemap 7443 nqprrnd 7730 nqprxx 7733 ltexprlempr 7795 recexprlempr 7819 cauappcvgprlemcl 7840 caucvgprlemcl 7863 caucvgprprlemcl 7891 suplocsrlempr 7994 lemulge11 9013 nn0ge2m1nn 9429 frecfzennn 10648 wrdlenge2n0 11107 swrdnd 11191 reccn2ap 11824 demoivreALT 12285 pcdiv 12825 idghm 13796 subrgid 14187 mulgghm2 14572 topcld 14783 metrest 15180 2lgs 15783 pwle2 16364 |
| Copyright terms: Public domain | W3C validator |