| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | Unicode version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | jctil.1 |
. 2
| |
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3295 unidif 3872 iunxdif2 3966 exss 4261 reg2exmidlema 4571 limom 4651 xpiindim 4804 relssres 4985 funco 5299 nfunsn 5596 fliftcnv 5845 fo1stresm 6228 fo2ndresm 6229 dftpos3 6329 tfri1d 6402 rdgtfr 6441 rdgruledefgg 6442 frectfr 6467 elixpsn 6803 mapxpen 6918 phplem2 6923 sbthlem2 7033 sbthlemi3 7034 djuss 7145 caseinl 7166 caseinr 7167 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 2omotaplemap 7342 nqprrnd 7629 nqprxx 7632 ltexprlempr 7694 recexprlempr 7718 cauappcvgprlemcl 7739 caucvgprlemcl 7762 caucvgprprlemcl 7790 suplocsrlempr 7893 lemulge11 8912 nn0ge2m1nn 9328 frecfzennn 10537 wrdlenge2n0 10989 reccn2ap 11497 demoivreALT 11958 pcdiv 12498 idghm 13467 subrgid 13857 mulgghm2 14242 topcld 14453 metrest 14850 2lgs 15453 pwle2 15753 |
| Copyright terms: Public domain | W3C validator |