| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | Unicode version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | jctil.1 |
. 2
| |
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3312 unidif 3896 iunxdif2 3990 exss 4289 reg2exmidlema 4600 limom 4680 xpiindim 4833 relssres 5016 funco 5330 nfunsn 5634 fliftcnv 5887 fo1stresm 6270 fo2ndresm 6271 dftpos3 6371 tfri1d 6444 rdgtfr 6483 rdgruledefgg 6484 frectfr 6509 elixpsn 6845 mapxpen 6970 phplem2 6975 sbthlem2 7086 sbthlemi3 7087 djuss 7198 caseinl 7219 caseinr 7220 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 2omotaplemap 7404 nqprrnd 7691 nqprxx 7694 ltexprlempr 7756 recexprlempr 7780 cauappcvgprlemcl 7801 caucvgprlemcl 7824 caucvgprprlemcl 7852 suplocsrlempr 7955 lemulge11 8974 nn0ge2m1nn 9390 frecfzennn 10608 wrdlenge2n0 11066 swrdnd 11150 reccn2ap 11739 demoivreALT 12200 pcdiv 12740 idghm 13710 subrgid 14100 mulgghm2 14485 topcld 14696 metrest 15093 2lgs 15696 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |