| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | Unicode version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 |
|
| jctil.2 |
|
| Ref | Expression |
|---|---|
| jctil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | jctil.1 |
. 2
| |
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3304 unidif 3882 iunxdif2 3976 exss 4272 reg2exmidlema 4583 limom 4663 xpiindim 4816 relssres 4998 funco 5312 nfunsn 5613 fliftcnv 5866 fo1stresm 6249 fo2ndresm 6250 dftpos3 6350 tfri1d 6423 rdgtfr 6462 rdgruledefgg 6463 frectfr 6488 elixpsn 6824 mapxpen 6947 phplem2 6952 sbthlem2 7062 sbthlemi3 7063 djuss 7174 caseinl 7195 caseinr 7196 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 2omotaplemap 7371 nqprrnd 7658 nqprxx 7661 ltexprlempr 7723 recexprlempr 7747 cauappcvgprlemcl 7768 caucvgprlemcl 7791 caucvgprprlemcl 7819 suplocsrlempr 7922 lemulge11 8941 nn0ge2m1nn 9357 frecfzennn 10573 wrdlenge2n0 11031 swrdnd 11115 reccn2ap 11657 demoivreALT 12118 pcdiv 12658 idghm 13628 subrgid 14018 mulgghm2 14403 topcld 14614 metrest 15011 2lgs 15614 pwle2 15972 |
| Copyright terms: Public domain | W3C validator |