ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq12i Unicode version

Theorem deceq12i 9330
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
deceq1i.1  |-  A  =  B
deceq12i.2  |-  C  =  D
Assertion
Ref Expression
deceq12i  |- ; A C  = ; B D

Proof of Theorem deceq12i
StepHypRef Expression
1 deceq1i.1 . . 3  |-  A  =  B
21deceq1i 9328 . 2  |- ; A C  = ; B C
3 deceq12i.2 . . 3  |-  C  =  D
43deceq2i 9329 . 2  |- ; B C  = ; B D
52, 4eqtri 2186 1  |- ; A C  = ; B D
Colors of variables: wff set class
Syntax hints:    = wceq 1343  ;cdc 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-dec 9323
This theorem is referenced by:  11multnc  9389
  Copyright terms: Public domain W3C validator