Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > deceq12i | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
deceq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
deceq12i | ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | deceq1i 9307 | . 2 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
3 | deceq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | deceq2i 9308 | . 2 ⊢ ;𝐵𝐶 = ;𝐵𝐷 |
5 | 2, 4 | eqtri 2178 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ;cdc 9301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-iota 5138 df-fv 5181 df-ov 5830 df-dec 9302 |
This theorem is referenced by: 11multnc 9368 |
Copyright terms: Public domain | W3C validator |