![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > deceq12i | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
deceq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
deceq12i | ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | deceq1i 9407 | . 2 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
3 | deceq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | deceq2i 9408 | . 2 ⊢ ;𝐵𝐶 = ;𝐵𝐷 |
5 | 2, 4 | eqtri 2209 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ;cdc 9401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-rex 2473 df-v 2753 df-un 3147 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-iota 5192 df-fv 5238 df-ov 5893 df-dec 9402 |
This theorem is referenced by: 11multnc 9468 |
Copyright terms: Public domain | W3C validator |