ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq12i GIF version

Theorem deceq12i 9326
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
deceq1i.1 𝐴 = 𝐵
deceq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
deceq12i 𝐴𝐶 = 𝐵𝐷

Proof of Theorem deceq12i
StepHypRef Expression
1 deceq1i.1 . . 3 𝐴 = 𝐵
21deceq1i 9324 . 2 𝐴𝐶 = 𝐵𝐶
3 deceq12i.2 . . 3 𝐶 = 𝐷
43deceq2i 9325 . 2 𝐵𝐶 = 𝐵𝐷
52, 4eqtri 2186 1 𝐴𝐶 = 𝐵𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cdc 9318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-iota 5152  df-fv 5195  df-ov 5844  df-dec 9319
This theorem is referenced by:  11multnc  9385
  Copyright terms: Public domain W3C validator