![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > deceq12i | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
deceq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
deceq12i | ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | deceq1i 8792 | . 2 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
3 | deceq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | deceq2i 8793 | . 2 ⊢ ;𝐵𝐶 = ;𝐵𝐷 |
5 | 2, 4 | eqtri 2105 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1287 ;cdc 8786 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-nf 1393 df-sb 1690 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-rex 2361 df-v 2616 df-un 2990 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-br 3815 df-iota 4937 df-fv 4980 df-ov 5597 df-dec 8787 |
This theorem is referenced by: 11multnc 8853 |
Copyright terms: Public domain | W3C validator |