ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov Unicode version

Definition df-ov 5937
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation + and arguments  A and  B are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 5971 and ovprc2 5972. On the other hand, we often find uses for this definition when  F is a proper class.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5938. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov  |-  ( A F B )  =  ( F `  <. A ,  B >. )

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cF . . 3  class  F
41, 2, 3co 5934 . 2  class  ( A F B )
51, 2cop 3635 . . 3  class  <. A ,  B >.
65, 3cfv 5268 . 2  class  ( F `
 <. A ,  B >. )
74, 6wceq 1372 1  wff  ( A F B )  =  ( F `  <. A ,  B >. )
Colors of variables: wff set class
This definition is referenced by:  oveq  5940  oveq1  5941  oveq2  5942  nfovd  5963  fnovex  5967  ovexg  5968  ovssunirng  5969  ovprc  5970  fnotovb  5978  ffnov  6039  eqfnov  6042  fnovim  6044  ovid  6052  ovidig  6053  ov  6055  ovigg  6056  fvmpopr2d  6072  ov6g  6074  ovg  6075  ovres  6076  fovcdm  6079  fnrnov  6082  foov  6083  fnovrn  6084  funimassov  6086  ovelimab  6087  ovconst2  6088  elmpocl  6131  oprssdmm  6247  mpofvex  6281  oprab2co  6294  algrflem  6305  algrflemg  6306  mpoxopn0yelv  6315  ovtposg  6335  addpiord  7411  mulpiord  7412  addvalex  7939  cnref1o  9754  ioof  10075  frecuzrdgrrn  10534  frec2uzrdg  10535  frecuzrdgrcl  10536  frecuzrdgsuc  10540  frecuzrdgrclt  10541  frecuzrdgg  10542  frecuzrdgsuctlem  10549  seq3val  10586  seqvalcd  10587  cnrecnv  11140  eucalgval  12295  eucalginv  12297  eucalglt  12298  eucalg  12300  sqpweven  12416  2sqpwodd  12417  isstructim  12765  isstructr  12766  relelbasov  12813  imasaddvallemg  13065  xpsff1o  13099  mgm1  13120  sgrp1  13161  mnd1  13205  mnd1id  13206  grp1  13356  srgfcl  13653  ring1  13739  txdis1cn  14668  lmcn2  14670  cnmpt12f  14676  cnmpt21  14681  cnmpt2t  14683  cnmpt22  14684  psmetxrge0  14722  xmeterval  14825  comet  14889  txmetcnp  14908  qtopbasss  14911  cnmetdval  14919  remetdval  14937  tgqioo  14945  mpomulcn  14956  mpodvdsmulf1o  15380  fsumdvdsmul  15381
  Copyright terms: Public domain W3C validator