ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov Unicode version

Definition df-ov 5960
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation + and arguments  A and  B are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 5994 and ovprc2 5995. On the other hand, we often find uses for this definition when  F is a proper class.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5961. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov  |-  ( A F B )  =  ( F `  <. A ,  B >. )

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cF . . 3  class  F
41, 2, 3co 5957 . 2  class  ( A F B )
51, 2cop 3641 . . 3  class  <. A ,  B >.
65, 3cfv 5280 . 2  class  ( F `
 <. A ,  B >. )
74, 6wceq 1373 1  wff  ( A F B )  =  ( F `  <. A ,  B >. )
Colors of variables: wff set class
This definition is referenced by:  oveq  5963  oveq1  5964  oveq2  5965  nfovd  5986  fnovex  5990  ovexg  5991  ovssunirng  5992  ovprc  5993  fnotovb  6001  ffnov  6062  eqfnov  6065  fnovim  6067  ovid  6075  ovidig  6076  ov  6078  ovigg  6079  fvmpopr2d  6095  ov6g  6097  ovg  6098  ovres  6099  fovcdm  6102  fnrnov  6105  foov  6106  fnovrn  6107  funimassov  6109  ovelimab  6110  ovconst2  6111  elmpocl  6154  oprssdmm  6270  mpofvex  6304  oprab2co  6317  algrflem  6328  algrflemg  6329  mpoxopn0yelv  6338  ovtposg  6358  addpiord  7449  mulpiord  7450  addvalex  7977  cnref1o  9792  ioof  10113  frecuzrdgrrn  10575  frec2uzrdg  10576  frecuzrdgrcl  10577  frecuzrdgsuc  10581  frecuzrdgrclt  10582  frecuzrdgg  10583  frecuzrdgsuctlem  10590  seq3val  10627  seqvalcd  10628  pfxclz  11155  cnrecnv  11296  eucalgval  12451  eucalginv  12453  eucalglt  12454  eucalg  12456  sqpweven  12572  2sqpwodd  12573  isstructim  12921  isstructr  12922  relelbasov  12969  imasaddvallemg  13222  xpsff1o  13256  mgm1  13277  sgrp1  13318  mnd1  13362  mnd1id  13363  grp1  13513  srgfcl  13810  ring1  13896  txdis1cn  14825  lmcn2  14827  cnmpt12f  14833  cnmpt21  14838  cnmpt2t  14840  cnmpt22  14841  psmetxrge0  14879  xmeterval  14982  comet  15046  txmetcnp  15065  qtopbasss  15068  cnmetdval  15076  remetdval  15094  tgqioo  15102  mpomulcn  15113  mpodvdsmulf1o  15537  fsumdvdsmul  15538  opvtxov  15697  opiedgov  15700  edgov  15734
  Copyright terms: Public domain W3C validator