ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov Unicode version

Definition df-ov 6003
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation + and arguments  A and  B are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 6037 and ovprc2 6038. On the other hand, we often find uses for this definition when  F is a proper class.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 6004. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov  |-  ( A F B )  =  ( F `  <. A ,  B >. )

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cF . . 3  class  F
41, 2, 3co 6000 . 2  class  ( A F B )
51, 2cop 3669 . . 3  class  <. A ,  B >.
65, 3cfv 5317 . 2  class  ( F `
 <. A ,  B >. )
74, 6wceq 1395 1  wff  ( A F B )  =  ( F `  <. A ,  B >. )
Colors of variables: wff set class
This definition is referenced by:  oveq  6006  oveq1  6007  oveq2  6008  nfovd  6029  fnovex  6033  ovexg  6034  ovssunirng  6035  ovprc  6036  elovimad  6044  fnbrovb  6045  fnotovb  6046  ffnov  6107  eqfnov  6110  fnovim  6112  ovid  6120  ovidig  6121  ov  6123  ovigg  6124  fvmpopr2d  6140  ov6g  6142  ovg  6143  ovres  6144  fovcdm  6147  fnrnov  6150  foov  6151  fnovrn  6152  funimassov  6154  ovelimab  6155  ovconst2  6156  elmpocl  6199  oprssdmm  6315  mpofvex  6349  oprab2co  6362  algrflem  6373  algrflemg  6374  mpoxopn0yelv  6383  ovtposg  6403  addpiord  7499  mulpiord  7500  addvalex  8027  cnref1o  9842  ioof  10163  frecuzrdgrrn  10625  frec2uzrdg  10626  frecuzrdgrcl  10627  frecuzrdgsuc  10631  frecuzrdgrclt  10632  frecuzrdgg  10633  frecuzrdgsuctlem  10640  seq3val  10677  seqvalcd  10678  pfxclz  11206  cnrecnv  11416  eucalgval  12571  eucalginv  12573  eucalglt  12574  eucalg  12576  sqpweven  12692  2sqpwodd  12693  isstructim  13041  isstructr  13042  relelbasov  13090  imasaddvallemg  13343  xpsff1o  13377  mgm1  13398  sgrp1  13439  mnd1  13483  mnd1id  13484  grp1  13634  srgfcl  13931  ring1  14017  txdis1cn  14946  lmcn2  14948  cnmpt12f  14954  cnmpt21  14959  cnmpt2t  14961  cnmpt22  14962  psmetxrge0  15000  xmeterval  15103  comet  15167  txmetcnp  15186  qtopbasss  15189  cnmetdval  15197  remetdval  15215  tgqioo  15223  mpomulcn  15234  mpodvdsmulf1o  15658  fsumdvdsmul  15659  opvtxov  15818  opiedgov  15821  edgov  15857
  Copyright terms: Public domain W3C validator