HomeHome Intuitionistic Logic Explorer
Theorem List (p. 94 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9301-9400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem9t7e63 9301 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  7
 )  = ; 6 3
 
Theorem9t8e72 9302 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  8
 )  = ; 7 2
 
Theorem9t9e81 9303 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  9
 )  = ; 8 1
 
Theorem9t11e99 9304 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
 |-  ( 9  x. ; 1 1 )  = ; 9
 9
 
Theorem9lt10 9305 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  9  < ; 1 0
 
Theorem8lt10 9306 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  8  < ; 1 0
 
Theorem7lt10 9307 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  7  < ; 1 0
 
Theorem6lt10 9308 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  6  < ; 1 0
 
Theorem5lt10 9309 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  5  < ; 1 0
 
Theorem4lt10 9310 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  4  < ; 1 0
 
Theorem3lt10 9311 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  3  < ; 1 0
 
Theorem2lt10 9312 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  2  < ; 1 0
 
Theorem1lt10 9313 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  1  < ; 1 0
 
Theoremdecbin0 9314 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( 4  x.  A )  =  ( 2  x.  ( 2  x.  A ) )
 
Theoremdecbin2 9315 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  ( ( 2  x.  A )  +  1 ) )
 
Theoremdecbin3 9316 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  3 )  =  ( ( 2  x.  ( ( 2  x.  A )  +  1 ) )  +  1 )
 
Theoremhalfthird 9317 Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
 |-  ( ( 1  / 
 2 )  -  (
 1  /  3 )
 )  =  ( 1 
 /  6 )
 
Theorem5recm6rec 9318 One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( ( 1  / 
 5 )  -  (
 1  /  6 )
 )  =  ( 1 
 / ; 3 0 )
 
4.4.11  Upper sets of integers
 
Syntaxcuz 9319 Extend class notation with the upper integer function. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M."
 class  ZZ>=
 
Definitiondf-uz 9320* Define a function whose value at  j is the semi-infinite set of contiguous integers starting at  j, which we will also call the upper integers starting at  j. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M." See uzval 9321 for its value, uzssz 9338 for its relationship to  ZZ, nnuz 9354 and nn0uz 9353 for its relationships to  NN and  NN0, and eluz1 9323 and eluz2 9325 for its membership relations. (Contributed by NM, 5-Sep-2005.)
 |- 
 ZZ>=  =  ( j  e. 
 ZZ  |->  { k  e.  ZZ  |  j  <_  k }
 )
 
Theoremuzval 9321* The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ZZ  ->  ( ZZ>= `  N )  =  { k  e.  ZZ  |  N  <_  k }
 )
 
Theoremuzf 9322 The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 ZZ>= : ZZ --> ~P ZZ
 
Theoremeluz1 9323 Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>=
 `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
 
Theoremeluzel2 9324 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  e.  ZZ )
 
Theoremeluz2 9325 Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show  M  e.  ZZ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )
 )
 
Theoremeluz1i 9326 Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
 |-  M  e.  ZZ   =>    |-  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) )
 
Theoremeluzuzle 9327 An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
 |-  ( ( B  e.  ZZ  /\  B  <_  A )  ->  ( C  e.  ( ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )
 
Theoremeluzelz 9328 A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  ZZ )
 
Theoremeluzelre 9329 A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  RR )
 
Theoremeluzelcn 9330 A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  CC )
 
Theoremeluzle 9331 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  <_  N )
 
Theoremeluz 9332 Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  <->  M 
 <_  N ) )
 
Theoremuzid 9333 Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M ) )
 
Theoremuzn0 9334 The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
 |-  ( M  e.  ran  ZZ>=  ->  M  =/=  (/) )
 
Theoremuztrn 9335 Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
 |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N ) )  ->  M  e.  ( ZZ>= `  N ) )
 
Theoremuztrn2 9336 Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  K )   =>    |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  Z )
 
Theoremuzneg 9337 Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  -u M  e.  ( ZZ>= `  -u N ) )
 
Theoremuzssz 9338 An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ZZ>= `  M )  C_ 
 ZZ
 
Theoremuzss 9339 Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
 )
 
Theoremuztric 9340 Trichotomy of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
 
Theoremuz11 9341 The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
 |-  ( M  e.  ZZ  ->  ( ( ZZ>= `  M )  =  ( ZZ>= `  N )  <->  M  =  N ) )
 
Theoremeluzp1m1 9342 Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  ( N  -  1
 )  e.  ( ZZ>= `  M ) )
 
Theoremeluzp1l 9343 Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  M  <  N )
 
Theoremeluzp1p1 9344 Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  ( M  +  1
 ) ) )
 
Theoremeluzaddi 9345 Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
 |-  M  e.  ZZ   &    |-  K  e.  ZZ   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
 
Theoremeluzsubi 9346 Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
 |-  M  e.  ZZ   &    |-  K  e.  ZZ   =>    |-  ( N  e.  ( ZZ>=
 `  ( M  +  K ) )  ->  ( N  -  K )  e.  ( ZZ>= `  M ) )
 
Theoremeluzadd 9347 Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
 
Theoremeluzsub 9348 Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( N  -  K )  e.  ( ZZ>= `  M ) )
 
Theoremuzm1 9349 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  =  M  \/  ( N  -  1
 )  e.  ( ZZ>= `  M ) ) )
 
Theoremuznn0sub 9350 The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  -  M )  e.  NN0 )
 
Theoremuzin 9351 Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
 
Theoremuzp1 9352 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1
 ) ) ) )
 
Theoremnn0uz 9353 Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |- 
 NN0  =  ( ZZ>= `  0 )
 
Theoremnnuz 9354 Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |- 
 NN  =  ( ZZ>= `  1 )
 
Theoremelnnuz 9355 A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.)
 |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
 )
 
Theoremelnn0uz 9356 A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
 |-  ( N  e.  NN0  <->  N  e.  ( ZZ>= `  0 )
 )
 
Theoremeluz2nn 9357 An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.)
 |-  ( A  e.  ( ZZ>=
 `  2 )  ->  A  e.  NN )
 
Theoremeluzge2nn0 9358 If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  N  e.  NN0 )
 
Theoremuzuzle23 9359 An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( A  e.  ( ZZ>=
 `  3 )  ->  A  e.  ( ZZ>= `  2 ) )
 
Theoremeluzge3nn 9360 If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  N  e.  NN )
 
Theoremuz3m2nn 9361 An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  ( N  -  2
 )  e.  NN )
 
Theorem1eluzge0 9362 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  1  e.  ( ZZ>= `  0 )
 
Theorem2eluzge0 9363 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
 |-  2  e.  ( ZZ>= `  0 )
 
Theorem2eluzge1 9364 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  2  e.  ( ZZ>= `  1 )
 
Theoremuznnssnn 9365 The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( N  e.  NN  ->  ( ZZ>= `  N )  C_ 
 NN )
 
Theoremraluz 9366* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( A. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremraluz2 9367* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( A. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremrexuz 9368* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theoremrexuz2 9369* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( E. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  /\ 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theorem2rexuz 9370* Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
 |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph  <->  E. m  e.  ZZ  E. n  e.  ZZ  ( m  <_  n  /\  ph )
 )
 
Theorempeano2uz 9371 Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  M ) )
 
Theorempeano2uzs 9372 Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
 
Theorempeano2uzr 9373 Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  N  e.  ( ZZ>= `  M ) )
 
Theoremuzaddcl 9374 Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M ) )
 
Theoremnn0pzuz 9375 The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( ( N  e.  NN0  /\  Z  e.  ZZ )  ->  ( N  +  Z )  e.  ( ZZ>= `  Z ) )
 
Theoremuzind4 9376* Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ta )
 
Theoremuzind4ALT 9377* Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9376 or uzind4ALT 9377 may be used; see comment for nnind 8729. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   &    |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremuzind4s 9378* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  k ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ph  ->  [. (
 k  +  1 ) 
 /  k ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  k ]. ph )
 
Theoremuzind4s2 9379* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 9378 when  j and  k must be distinct in  [. ( k  +  1 )  /  j ]. ph. (Contributed by NM, 16-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  j ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( [. k  /  j ]. ph  ->  [. (
 k  +  1 ) 
 /  j ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  j ]. ph )
 
Theoremuzind4i 9380* Induction on the upper integers that start at  M. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 9376 assuming that  ps holds unconditionally. Notice that  N  e.  (
ZZ>= `  M ) implies that the lower bound  M is an integer ( M  e.  ZZ, see eluzel2 9324). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 k  e.  ( ZZ>= `  M )  ->  ( ch 
 ->  th ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremindstr 9381* Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
 )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoreminfrenegsupex 9382* The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( {
 z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
 )
 
Theoremsupinfneg 9383* If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9398. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
 y ) ) )
 
Theoreminfsupneg 9384* If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9383. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
 z ) ) )
 
Theoremsupminfex 9385* A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
 
Theoremeluznn0 9386 Membership in a nonnegative upper set of integers implies membership in  NN0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN0 )
 
Theoremeluznn 9387 Membership in a positive upper set of integers implies membership in  NN. (Contributed by JJ, 1-Oct-2018.)
 |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  NN )
 
Theoremeluz2b1 9388 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  ZZ  /\  1  <  N ) )
 
Theoremeluz2gt1 9389 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  -> 
 1  <  N )
 
Theoremeluz2b2 9390 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  1  <  N ) )
 
Theoremeluz2b3 9391 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  N  =/=  1
 ) )
 
Theoremuz2m1nn 9392 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( N  -  1
 )  e.  NN )
 
Theorem1nuz2 9393 1 is not in  ( ZZ>= `  2
). (Contributed by Paul Chapman, 21-Nov-2012.)
 |- 
 -.  1  e.  ( ZZ>=
 `  2 )
 
Theoremelnn1uz2 9394 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 ) ) )
 
Theoremuz2mulcl 9395 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ( ZZ>= `  2 )  /\  N  e.  ( ZZ>= `  2 ) )  ->  ( M  x.  N )  e.  ( ZZ>= `  2 ) )
 
Theoremindstr2 9396* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
 |-  ( x  =  1 
 ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ch   &    |-  ( x  e.  ( ZZ>= `  2 )  ->  ( A. y  e.  NN  (
 y  <  x  ->  ps )  ->  ph ) )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoremeluzdc 9397 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M ) )
 
Theoremublbneg 9398* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9383. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( E. x  e. 
 RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
 { z  e.  RR  |  -u z  e.  A } x  <_  y )
 
Theoremeqreznegel 9399* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( A  C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
 
Theoremnegm 9400* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
 |-  ( ( A  C_  RR  /\  E. x  x  e.  A )  ->  E. y  y  e.  { z  e.  RR  |  -u z  e.  A }
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >