![]() |
Intuitionistic Logic Explorer Theorem List (p. 94 of 156) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nn0ge2m1nn0 9301 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0nndivcl 9302 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
The function values of the hash (set size) function are either nonnegative
integers or positive infinity. To avoid the need to distinguish between
finite and infinite sets (and therefore if the set size is a nonnegative
integer or positive infinity), it is useful to provide a definition of the
set of nonnegative integers extended by positive infinity, analogously to
the extension of the real numbers | ||
Syntax | cxnn0 9303 | The set of extended nonnegative integers. |
![]() | ||
Definition | df-xnn0 9304 |
Define the set of extended nonnegative integers that includes positive
infinity. Analogue of the extension of the real numbers ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elxnn0 9305 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0ssxnn0 9306 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() | ||
Theorem | nn0xnn0 9307 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xnn0xr 9308 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0xnn0 9309 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() | ||
Theorem | pnf0xnn0 9310 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() | ||
Theorem | nn0nepnf 9311 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0xnn0d 9312 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0nepnfd 9313 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xnn0nemnf 9314 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xnn0xrnemnf 9315 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xnn0nnn0pnf 9316 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | cz 9317 | Extend class notation to include the class of integers. |
![]() ![]() | ||
Definition | df-z 9318 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elz 9319 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnnegz 9320 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zre 9321 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zcn 9322 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zrei 9323 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zssre 9324 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | zsscn 9325 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | zex 9326 | The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() | ||
Theorem | elnnz 9327 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0z 9328 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
![]() ![]() ![]() ![]() | ||
Theorem | 0zd 9329 | Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elnn0z 9330 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elznn0nn 9331 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elznn0 9332 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elznn 9333 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnssz 9334 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
![]() ![]() ![]() ![]() | ||
Theorem | nn0ssz 9335 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | nnz 9336 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0z 9337 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnzi 9338 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0zi 9339 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elnnz1 9340 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnzrab 9341 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0zrab 9342 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1z 9343 | One is an integer. (Contributed by NM, 10-May-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | 1zzd 9344 | 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2z 9345 | Two is an integer. (Contributed by NM, 10-May-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | 3z 9346 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | 4z 9347 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
![]() ![]() ![]() ![]() | ||
Theorem | znegcl 9348 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | neg1z 9349 | -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | znegclb 9350 | A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0negz 9351 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0negzi 9352 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | peano2z 9353 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zaddcllempos 9354 |
Lemma for zaddcl 9357. Special case in which ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | peano2zm 9355 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zaddcllemneg 9356 |
Lemma for zaddcl 9357. Special case in which ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zaddcl 9357 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zsubcl 9358 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ztri3or0 9359 | Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ztri3or 9360 | Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zletric 9361 | Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zlelttric 9362 | Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zltnle 9363 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zleloe 9364 | Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | znnnlt1 9365 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zletr 9366 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zrevaddcl 9367 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | znnsub 9368 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 9021.) (Contributed by NM, 11-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nzadd 9369 | The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zmulcl 9370 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zltp1le 9371 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zleltp1 9372 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zlem1lt 9373 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zltlem1 9374 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zgt0ge1 9375 |
An integer greater than ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnleltp1 9376 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnltp1le 9377 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnaddm1cl 9378 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0ltp1le 9379 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0leltp1 9380 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0ltlem1 9381 | Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | znn0sub 9382 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 9383.) (Contributed by NM, 14-Jul-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0sub 9383 | Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltsubnn0 9384 | Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0negleid 9385 | A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | difgtsumgt 9386 | If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0n0n1ge2 9387 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elz2 9388* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dfz2 9389 | Alternate definition of the integers, based on elz2 9388. (Contributed by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0sub2 9390 | Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zapne 9391 | Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zdceq 9392 | Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zdcle 9393 |
Integer ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zdclt 9394 |
Integer ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zltlen 9395 | Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8651 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0n0n1ge2b 9396 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0lt10b 9397 |
A nonnegative integer less than ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0lt2 9398 | A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0le2is012 9399 | A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn0lem1lt 9400 | Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |