Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elco | Unicode version |
Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
elco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4612 | . . 3 | |
2 | 1 | eleq2i 2232 | . 2 |
3 | elopab 4235 | . . 3 | |
4 | 19.42v 1894 | . . . . . . 7 | |
5 | 4 | bicomi 131 | . . . . . 6 |
6 | 5 | exbii 1593 | . . . . 5 |
7 | excom 1652 | . . . . 5 | |
8 | 6, 7 | bitri 183 | . . . 4 |
9 | 8 | exbii 1593 | . . 3 |
10 | 3, 9 | bitri 183 | . 2 |
11 | 2, 10 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cop 3578 class class class wbr 3981 copab 4041 ccom 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-opab 4043 df-co 4612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |