ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores Unicode version

Theorem cores 5134
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )

Proof of Theorem cores
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . . . 7  |-  z  e. 
_V
2 vex 2742 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 4862 . . . . . 6  |-  ( z B y  ->  y  e.  ran  B )
4 ssel 3151 . . . . . 6  |-  ( ran 
B  C_  C  ->  ( y  e.  ran  B  ->  y  e.  C ) )
5 vex 2742 . . . . . . . 8  |-  x  e. 
_V
65brres 4915 . . . . . . 7  |-  ( y ( A  |`  C ) x  <->  ( y A x  /\  y  e.  C ) )
76rbaib 921 . . . . . 6  |-  ( y  e.  C  ->  (
y ( A  |`  C ) x  <->  y A x ) )
83, 4, 7syl56 34 . . . . 5  |-  ( ran 
B  C_  C  ->  ( z B y  -> 
( y ( A  |`  C ) x  <->  y A x ) ) )
98pm5.32d 450 . . . 4  |-  ( ran 
B  C_  C  ->  ( ( z B y  /\  y ( A  |`  C ) x )  <-> 
( z B y  /\  y A x ) ) )
109exbidv 1825 . . 3  |-  ( ran 
B  C_  C  ->  ( E. y ( z B y  /\  y
( A  |`  C ) x )  <->  E. y
( z B y  /\  y A x ) ) )
1110opabbidv 4071 . 2  |-  ( ran 
B  C_  C  ->  {
<. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) } )
12 df-co 4637 . 2  |-  ( ( A  |`  C )  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }
13 df-co 4637 . 2  |-  ( A  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) }
1411, 12, 133eqtr4g 2235 1  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    C_ wss 3131   class class class wbr 4005   {copab 4065   ran crn 4629    |` cres 4630    o. ccom 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640
This theorem is referenced by:  cocnvcnv1  5141  cores2  5143  cocnvres  5155  relcoi2  5161  fco2  5384  fcoi2  5399
  Copyright terms: Public domain W3C validator