ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores Unicode version

Theorem cores 5124
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )

Proof of Theorem cores
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . . . 7  |-  z  e. 
_V
2 vex 2738 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 4853 . . . . . 6  |-  ( z B y  ->  y  e.  ran  B )
4 ssel 3147 . . . . . 6  |-  ( ran 
B  C_  C  ->  ( y  e.  ran  B  ->  y  e.  C ) )
5 vex 2738 . . . . . . . 8  |-  x  e. 
_V
65brres 4906 . . . . . . 7  |-  ( y ( A  |`  C ) x  <->  ( y A x  /\  y  e.  C ) )
76rbaib 921 . . . . . 6  |-  ( y  e.  C  ->  (
y ( A  |`  C ) x  <->  y A x ) )
83, 4, 7syl56 34 . . . . 5  |-  ( ran 
B  C_  C  ->  ( z B y  -> 
( y ( A  |`  C ) x  <->  y A x ) ) )
98pm5.32d 450 . . . 4  |-  ( ran 
B  C_  C  ->  ( ( z B y  /\  y ( A  |`  C ) x )  <-> 
( z B y  /\  y A x ) ) )
109exbidv 1823 . . 3  |-  ( ran 
B  C_  C  ->  ( E. y ( z B y  /\  y
( A  |`  C ) x )  <->  E. y
( z B y  /\  y A x ) ) )
1110opabbidv 4064 . 2  |-  ( ran 
B  C_  C  ->  {
<. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) } )
12 df-co 4629 . 2  |-  ( ( A  |`  C )  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }
13 df-co 4629 . 2  |-  ( A  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) }
1411, 12, 133eqtr4g 2233 1  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146    C_ wss 3127   class class class wbr 3998   {copab 4058   ran crn 4621    |` cres 4622    o. ccom 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632
This theorem is referenced by:  cocnvcnv1  5131  cores2  5133  cocnvres  5145  relcoi2  5151  fco2  5374  fcoi2  5389
  Copyright terms: Public domain W3C validator