| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coss2 | Unicode version | ||
| Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| coss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | 1 | ssbrd 4087 |
. . . . 5
|
| 3 | 2 | anim1d 336 |
. . . 4
|
| 4 | 3 | eximdv 1903 |
. . 3
|
| 5 | 4 | ssopab2dv 4325 |
. 2
|
| 6 | df-co 4684 |
. 2
| |
| 7 | df-co 4684 |
. 2
| |
| 8 | 5, 6, 7 | 3sstr4g 3236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4045 df-opab 4106 df-co 4684 |
| This theorem is referenced by: coeq2 4836 funss 5290 tposss 6332 dftpos4 6349 |
| Copyright terms: Public domain | W3C validator |