ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coss2 Unicode version

Theorem coss2 4783
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
Assertion
Ref Expression
coss2  |-  ( A 
C_  B  ->  ( C  o.  A )  C_  ( C  o.  B
) )

Proof of Theorem coss2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( A 
C_  B  ->  A  C_  B )
21ssbrd 4046 . . . . 5  |-  ( A 
C_  B  ->  (
x A y  ->  x B y ) )
32anim1d 336 . . . 4  |-  ( A 
C_  B  ->  (
( x A y  /\  y C z )  ->  ( x B y  /\  y C z ) ) )
43eximdv 1880 . . 3  |-  ( A 
C_  B  ->  ( E. y ( x A y  /\  y C z )  ->  E. y
( x B y  /\  y C z ) ) )
54ssopab2dv 4278 . 2  |-  ( A 
C_  B  ->  { <. x ,  z >.  |  E. y ( x A y  /\  y C z ) }  C_  {
<. x ,  z >.  |  E. y ( x B y  /\  y C z ) } )
6 df-co 4635 . 2  |-  ( C  o.  A )  =  { <. x ,  z
>.  |  E. y
( x A y  /\  y C z ) }
7 df-co 4635 . 2  |-  ( C  o.  B )  =  { <. x ,  z
>.  |  E. y
( x B y  /\  y C z ) }
85, 6, 73sstr4g 3198 1  |-  ( A 
C_  B  ->  ( C  o.  A )  C_  ( C  o.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    C_ wss 3129   class class class wbr 4003   {copab 4063    o. ccom 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3135  df-ss 3142  df-br 4004  df-opab 4065  df-co 4635
This theorem is referenced by:  coeq2  4785  funss  5235  tposss  6246  dftpos4  6263
  Copyright terms: Public domain W3C validator