| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funco | Unicode version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4948 |
. . . . 5
| |
| 2 | funmo 5286 |
. . . . . . . . . 10
| |
| 3 | 2 | alrimiv 1897 |
. . . . . . . . 9
|
| 4 | 3 | ralrimivw 2580 |
. . . . . . . 8
|
| 5 | dffun8 5299 |
. . . . . . . . 9
| |
| 6 | 5 | simprbi 275 |
. . . . . . . 8
|
| 7 | 4, 6 | anim12ci 339 |
. . . . . . 7
|
| 8 | r19.26 2632 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 134 |
. . . . . 6
|
| 10 | nfv 1551 |
. . . . . . . 8
| |
| 11 | 10 | euexex 2139 |
. . . . . . 7
|
| 12 | 11 | ralimi 2569 |
. . . . . 6
|
| 13 | 9, 12 | syl 14 |
. . . . 5
|
| 14 | ssralv 3257 |
. . . . 5
| |
| 15 | 1, 13, 14 | mpsyl 65 |
. . . 4
|
| 16 | df-br 4045 |
. . . . . . 7
| |
| 17 | df-co 4684 |
. . . . . . . 8
| |
| 18 | 17 | eleq2i 2272 |
. . . . . . 7
|
| 19 | opabid 4302 |
. . . . . . 7
| |
| 20 | 16, 18, 19 | 3bitri 206 |
. . . . . 6
|
| 21 | 20 | mobii 2091 |
. . . . 5
|
| 22 | 21 | ralbii 2512 |
. . . 4
|
| 23 | 15, 22 | sylibr 134 |
. . 3
|
| 24 | relco 5181 |
. . 3
| |
| 25 | 23, 24 | jctil 312 |
. 2
|
| 26 | dffun7 5298 |
. 2
| |
| 27 | 25, 26 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 |
| This theorem is referenced by: fnco 5384 f1co 5493 tposfun 6346 casefun 7187 caseinj 7191 caseinl 7193 caseinr 7194 djufun 7206 djuinj 7208 ctssdccl 7213 lidlmex 14237 |
| Copyright terms: Public domain | W3C validator |