| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funco | Unicode version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4967 |
. . . . 5
| |
| 2 | funmo 5305 |
. . . . . . . . . 10
| |
| 3 | 2 | alrimiv 1898 |
. . . . . . . . 9
|
| 4 | 3 | ralrimivw 2582 |
. . . . . . . 8
|
| 5 | dffun8 5318 |
. . . . . . . . 9
| |
| 6 | 5 | simprbi 275 |
. . . . . . . 8
|
| 7 | 4, 6 | anim12ci 339 |
. . . . . . 7
|
| 8 | r19.26 2634 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 134 |
. . . . . 6
|
| 10 | nfv 1552 |
. . . . . . . 8
| |
| 11 | 10 | euexex 2141 |
. . . . . . 7
|
| 12 | 11 | ralimi 2571 |
. . . . . 6
|
| 13 | 9, 12 | syl 14 |
. . . . 5
|
| 14 | ssralv 3265 |
. . . . 5
| |
| 15 | 1, 13, 14 | mpsyl 65 |
. . . 4
|
| 16 | df-br 4060 |
. . . . . . 7
| |
| 17 | df-co 4702 |
. . . . . . . 8
| |
| 18 | 17 | eleq2i 2274 |
. . . . . . 7
|
| 19 | opabid 4320 |
. . . . . . 7
| |
| 20 | 16, 18, 19 | 3bitri 206 |
. . . . . 6
|
| 21 | 20 | mobii 2092 |
. . . . 5
|
| 22 | 21 | ralbii 2514 |
. . . 4
|
| 23 | 15, 22 | sylibr 134 |
. . 3
|
| 24 | relco 5200 |
. . 3
| |
| 25 | 23, 24 | jctil 312 |
. 2
|
| 26 | dffun7 5317 |
. 2
| |
| 27 | 25, 26 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-fun 5292 |
| This theorem is referenced by: fnco 5403 f1co 5515 tposfun 6369 casefun 7213 caseinj 7217 caseinl 7219 caseinr 7220 djufun 7232 djuinj 7234 ctssdccl 7239 lidlmex 14352 |
| Copyright terms: Public domain | W3C validator |