Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funco | Unicode version |
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
funco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 4873 | . . . . 5 | |
2 | funmo 5203 | . . . . . . . . . 10 | |
3 | 2 | alrimiv 1862 | . . . . . . . . 9 |
4 | 3 | ralrimivw 2540 | . . . . . . . 8 |
5 | dffun8 5216 | . . . . . . . . 9 | |
6 | 5 | simprbi 273 | . . . . . . . 8 |
7 | 4, 6 | anim12ci 337 | . . . . . . 7 |
8 | r19.26 2592 | . . . . . . 7 | |
9 | 7, 8 | sylibr 133 | . . . . . 6 |
10 | nfv 1516 | . . . . . . . 8 | |
11 | 10 | euexex 2099 | . . . . . . 7 |
12 | 11 | ralimi 2529 | . . . . . 6 |
13 | 9, 12 | syl 14 | . . . . 5 |
14 | ssralv 3206 | . . . . 5 | |
15 | 1, 13, 14 | mpsyl 65 | . . . 4 |
16 | df-br 3983 | . . . . . . 7 | |
17 | df-co 4613 | . . . . . . . 8 | |
18 | 17 | eleq2i 2233 | . . . . . . 7 |
19 | opabid 4235 | . . . . . . 7 | |
20 | 16, 18, 19 | 3bitri 205 | . . . . . 6 |
21 | 20 | mobii 2051 | . . . . 5 |
22 | 21 | ralbii 2472 | . . . 4 |
23 | 15, 22 | sylibr 133 | . . 3 |
24 | relco 5102 | . . 3 | |
25 | 23, 24 | jctil 310 | . 2 |
26 | dffun7 5215 | . 2 | |
27 | 25, 26 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wex 1480 weu 2014 wmo 2015 wcel 2136 wral 2444 wss 3116 cop 3579 class class class wbr 3982 copab 4042 cdm 4604 ccom 4608 wrel 4609 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: fnco 5296 f1co 5405 tposfun 6228 casefun 7050 caseinj 7054 caseinl 7056 caseinr 7057 djufun 7069 djuinj 7071 ctssdccl 7076 |
Copyright terms: Public domain | W3C validator |