| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funco | Unicode version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4935 |
. . . . 5
| |
| 2 | funmo 5273 |
. . . . . . . . . 10
| |
| 3 | 2 | alrimiv 1888 |
. . . . . . . . 9
|
| 4 | 3 | ralrimivw 2571 |
. . . . . . . 8
|
| 5 | dffun8 5286 |
. . . . . . . . 9
| |
| 6 | 5 | simprbi 275 |
. . . . . . . 8
|
| 7 | 4, 6 | anim12ci 339 |
. . . . . . 7
|
| 8 | r19.26 2623 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 134 |
. . . . . 6
|
| 10 | nfv 1542 |
. . . . . . . 8
| |
| 11 | 10 | euexex 2130 |
. . . . . . 7
|
| 12 | 11 | ralimi 2560 |
. . . . . 6
|
| 13 | 9, 12 | syl 14 |
. . . . 5
|
| 14 | ssralv 3247 |
. . . . 5
| |
| 15 | 1, 13, 14 | mpsyl 65 |
. . . 4
|
| 16 | df-br 4034 |
. . . . . . 7
| |
| 17 | df-co 4672 |
. . . . . . . 8
| |
| 18 | 17 | eleq2i 2263 |
. . . . . . 7
|
| 19 | opabid 4290 |
. . . . . . 7
| |
| 20 | 16, 18, 19 | 3bitri 206 |
. . . . . 6
|
| 21 | 20 | mobii 2082 |
. . . . 5
|
| 22 | 21 | ralbii 2503 |
. . . 4
|
| 23 | 15, 22 | sylibr 134 |
. . 3
|
| 24 | relco 5168 |
. . 3
| |
| 25 | 23, 24 | jctil 312 |
. 2
|
| 26 | dffun7 5285 |
. 2
| |
| 27 | 25, 26 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 |
| This theorem is referenced by: fnco 5366 f1co 5475 tposfun 6318 casefun 7151 caseinj 7155 caseinl 7157 caseinr 7158 djufun 7170 djuinj 7172 ctssdccl 7177 lidlmex 14031 |
| Copyright terms: Public domain | W3C validator |