| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funco | Unicode version | ||
| Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4947 |
. . . . 5
| |
| 2 | funmo 5285 |
. . . . . . . . . 10
| |
| 3 | 2 | alrimiv 1896 |
. . . . . . . . 9
|
| 4 | 3 | ralrimivw 2579 |
. . . . . . . 8
|
| 5 | dffun8 5298 |
. . . . . . . . 9
| |
| 6 | 5 | simprbi 275 |
. . . . . . . 8
|
| 7 | 4, 6 | anim12ci 339 |
. . . . . . 7
|
| 8 | r19.26 2631 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 134 |
. . . . . 6
|
| 10 | nfv 1550 |
. . . . . . . 8
| |
| 11 | 10 | euexex 2138 |
. . . . . . 7
|
| 12 | 11 | ralimi 2568 |
. . . . . 6
|
| 13 | 9, 12 | syl 14 |
. . . . 5
|
| 14 | ssralv 3256 |
. . . . 5
| |
| 15 | 1, 13, 14 | mpsyl 65 |
. . . 4
|
| 16 | df-br 4044 |
. . . . . . 7
| |
| 17 | df-co 4683 |
. . . . . . . 8
| |
| 18 | 17 | eleq2i 2271 |
. . . . . . 7
|
| 19 | opabid 4301 |
. . . . . . 7
| |
| 20 | 16, 18, 19 | 3bitri 206 |
. . . . . 6
|
| 21 | 20 | mobii 2090 |
. . . . 5
|
| 22 | 21 | ralbii 2511 |
. . . 4
|
| 23 | 15, 22 | sylibr 134 |
. . 3
|
| 24 | relco 5180 |
. . 3
| |
| 25 | 23, 24 | jctil 312 |
. 2
|
| 26 | dffun7 5297 |
. 2
| |
| 27 | 25, 26 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-fun 5272 |
| This theorem is referenced by: fnco 5383 f1co 5492 tposfun 6345 casefun 7186 caseinj 7190 caseinl 7192 caseinr 7193 djufun 7205 djuinj 7207 ctssdccl 7212 lidlmex 14208 |
| Copyright terms: Public domain | W3C validator |