ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funco Unicode version

Theorem funco 5228
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )

Proof of Theorem funco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4873 . . . . 5  |-  dom  ( F  o.  G )  C_ 
dom  G
2 funmo 5203 . . . . . . . . . 10  |-  ( Fun 
F  ->  E* y 
z F y )
32alrimiv 1862 . . . . . . . . 9  |-  ( Fun 
F  ->  A. z E* y  z F
y )
43ralrimivw 2540 . . . . . . . 8  |-  ( Fun 
F  ->  A. x  e.  dom  G A. z E* y  z F
y )
5 dffun8 5216 . . . . . . . . 9  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x  e.  dom  G E! z  x G z ) )
65simprbi 273 . . . . . . . 8  |-  ( Fun 
G  ->  A. x  e.  dom  G E! z  x G z )
74, 6anim12ci 337 . . . . . . 7  |-  ( ( Fun  F  /\  Fun  G )  ->  ( A. x  e.  dom  G E! z  x G z  /\  A. x  e. 
dom  G A. z E* y  z F
y ) )
8 r19.26 2592 . . . . . . 7  |-  ( A. x  e.  dom  G ( E! z  x G z  /\  A. z E* y  z F
y )  <->  ( A. x  e.  dom  G E! z  x G z  /\  A. x  e. 
dom  G A. z E* y  z F
y ) )
97, 8sylibr 133 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  G ( E! z  x G z  /\  A. z E* y  z F y ) )
10 nfv 1516 . . . . . . . 8  |-  F/ y  x G z
1110euexex 2099 . . . . . . 7  |-  ( ( E! z  x G z  /\  A. z E* y  z F
y )  ->  E* y E. z ( x G z  /\  z F y ) )
1211ralimi 2529 . . . . . 6  |-  ( A. x  e.  dom  G ( E! z  x G z  /\  A. z E* y  z F
y )  ->  A. x  e.  dom  G E* y E. z ( x G z  /\  z F y ) )
139, 12syl 14 . . . . 5  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  G E* y E. z ( x G z  /\  z F y ) )
14 ssralv 3206 . . . . 5  |-  ( dom  ( F  o.  G
)  C_  dom  G  -> 
( A. x  e. 
dom  G E* y E. z ( x G z  /\  z F y )  ->  A. x  e.  dom  ( F  o.  G ) E* y E. z ( x G z  /\  z F y ) ) )
151, 13, 14mpsyl 65 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  ( F  o.  G ) E* y E. z ( x G z  /\  z F y ) )
16 df-br 3983 . . . . . . 7  |-  ( x ( F  o.  G
) y  <->  <. x ,  y >.  e.  ( F  o.  G )
)
17 df-co 4613 . . . . . . . 8  |-  ( F  o.  G )  =  { <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }
1817eleq2i 2233 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( F  o.  G
)  <->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. z ( x G z  /\  z F y ) } )
19 opabid 4235 . . . . . . 7  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }  <->  E. z
( x G z  /\  z F y ) )
2016, 18, 193bitri 205 . . . . . 6  |-  ( x ( F  o.  G
) y  <->  E. z
( x G z  /\  z F y ) )
2120mobii 2051 . . . . 5  |-  ( E* y  x ( F  o.  G ) y  <->  E* y E. z ( x G z  /\  z F y ) )
2221ralbii 2472 . . . 4  |-  ( A. x  e.  dom  ( F  o.  G ) E* y  x ( F  o.  G ) y  <->  A. x  e.  dom  ( F  o.  G
) E* y E. z ( x G z  /\  z F y ) )
2315, 22sylibr 133 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x  e.  dom  ( F  o.  G ) E* y  x ( F  o.  G ) y )
24 relco 5102 . . 3  |-  Rel  ( F  o.  G )
2523, 24jctil 310 . 2  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  ( F  o.  G
)  /\  A. x  e.  dom  ( F  o.  G ) E* y  x ( F  o.  G ) y ) )
26 dffun7 5215 . 2  |-  ( Fun  ( F  o.  G
)  <->  ( Rel  ( F  o.  G )  /\  A. x  e.  dom  ( F  o.  G
) E* y  x ( F  o.  G
) y ) )
2725, 26sylibr 133 1  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480   E!weu 2014   E*wmo 2015    e. wcel 2136   A.wral 2444    C_ wss 3116   <.cop 3579   class class class wbr 3982   {copab 4042   dom cdm 4604    o. ccom 4608   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190
This theorem is referenced by:  fnco  5296  f1co  5405  tposfun  6228  casefun  7050  caseinj  7054  caseinl  7056  caseinr  7057  djufun  7069  djuinj  7071  ctssdccl  7076
  Copyright terms: Public domain W3C validator