ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cotr Unicode version

Theorem cotr 4992
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Distinct variable group:    x, y, z, R

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4620 . . . 4  |-  ( R  o.  R )  =  { <. x ,  z
>.  |  E. y
( x R y  /\  y R z ) }
21relopabi 4737 . . 3  |-  Rel  ( R  o.  R )
3 ssrel 4699 . . 3  |-  ( Rel  ( R  o.  R
)  ->  ( ( R  o.  R )  C_  R  <->  A. x A. z
( <. x ,  z
>.  e.  ( R  o.  R )  ->  <. x ,  z >.  e.  R
) ) )
42, 3ax-mp 5 . 2  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R ) )
5 vex 2733 . . . . . . . 8  |-  x  e. 
_V
6 vex 2733 . . . . . . . 8  |-  z  e. 
_V
75, 6opelco 4783 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( R  o.  R
)  <->  E. y ( x R y  /\  y R z ) )
8 df-br 3990 . . . . . . . 8  |-  ( x R z  <->  <. x ,  z >.  e.  R
)
98bicomi 131 . . . . . . 7  |-  ( <.
x ,  z >.  e.  R  <->  x R z )
107, 9imbi12i 238 . . . . . 6  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  ( E. y
( x R y  /\  y R z )  ->  x R
z ) )
11 19.23v 1876 . . . . . 6  |-  ( A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  ( E. y ( x R y  /\  y R z )  ->  x R z ) )
1210, 11bitr4i 186 . . . . 5  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. y ( ( x R y  /\  y R z )  ->  x R z ) )
1312albii 1463 . . . 4  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. z A. y ( ( x R y  /\  y R z )  ->  x R z ) )
14 alcom 1471 . . . 4  |-  ( A. z A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1513, 14bitri 183 . . 3  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1615albii 1463 . 2  |-  ( A. x A. z ( <.
x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
174, 16bitri 183 1  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989    o. ccom 4615   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-co 4620
This theorem is referenced by:  xpidtr  5001  trin2  5002  dfer2  6514
  Copyright terms: Public domain W3C validator