Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cotr | Unicode version |
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cotr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4613 | . . . 4 | |
2 | 1 | relopabi 4730 | . . 3 |
3 | ssrel 4692 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | vex 2729 | . . . . . . . 8 | |
6 | vex 2729 | . . . . . . . 8 | |
7 | 5, 6 | opelco 4776 | . . . . . . 7 |
8 | df-br 3983 | . . . . . . . 8 | |
9 | 8 | bicomi 131 | . . . . . . 7 |
10 | 7, 9 | imbi12i 238 | . . . . . 6 |
11 | 19.23v 1871 | . . . . . 6 | |
12 | 10, 11 | bitr4i 186 | . . . . 5 |
13 | 12 | albii 1458 | . . . 4 |
14 | alcom 1466 | . . . 4 | |
15 | 13, 14 | bitri 183 | . . 3 |
16 | 15 | albii 1458 | . 2 |
17 | 4, 16 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wcel 2136 wss 3116 cop 3579 class class class wbr 3982 ccom 4608 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-co 4613 |
This theorem is referenced by: xpidtr 4994 trin2 4995 dfer2 6502 |
Copyright terms: Public domain | W3C validator |