ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relco Unicode version

Theorem relco 5169
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
relco  |-  Rel  ( A  o.  B )

Proof of Theorem relco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4673 . 2  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
21relopabi 4792 1  |-  Rel  ( A  o.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1506   class class class wbr 4034    o. ccom 4668   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670  df-rel 4671  df-co 4673
This theorem is referenced by:  dfco2  5170  resco  5175  coiun  5180  cocnvcnv2  5182  cores2  5183  co02  5184  co01  5185  coi1  5186  coass  5189  cossxp  5193  funco  5299  fmptco  5731  cofunexg  6175  dftpos4  6330  znleval  14285
  Copyright terms: Public domain W3C validator