ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relco Unicode version

Theorem relco 5182
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
relco  |-  Rel  ( A  o.  B )

Proof of Theorem relco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4685 . 2  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
21relopabi 4804 1  |-  Rel  ( A  o.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1515   class class class wbr 4045    o. ccom 4680   Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4107  df-xp 4682  df-rel 4683  df-co 4685
This theorem is referenced by:  dfco2  5183  resco  5188  coiun  5193  cocnvcnv2  5195  cores2  5196  co02  5197  co01  5198  coi1  5199  coass  5202  cossxp  5206  funco  5312  fmptco  5748  cofunexg  6196  dftpos4  6351  znleval  14448
  Copyright terms: Public domain W3C validator