Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  relco Unicode version

Theorem relco 5077
 Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
relco

Proof of Theorem relco
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4588 . 2
21relopabi 4705 1
 Colors of variables: wff set class Syntax hints:   wa 103  wex 1469   class class class wbr 3961   ccom 4583   wrel 4584 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-opab 4022  df-xp 4585  df-rel 4586  df-co 4588 This theorem is referenced by:  dfco2  5078  resco  5083  coiun  5088  cocnvcnv2  5090  cores2  5091  co02  5092  co01  5093  coi1  5094  coass  5097  cossxp  5101  funco  5203  fmptco  5626  cofunexg  6049  dftpos4  6200
 Copyright terms: Public domain W3C validator