ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relco Unicode version

Theorem relco 4916
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
relco  |-  Rel  ( A  o.  B )

Proof of Theorem relco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4437 . 2  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
21relopabi 4551 1  |-  Rel  ( A  o.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102   E.wex 1426   class class class wbr 3837    o. ccom 4432   Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-opab 3892  df-xp 4434  df-rel 4435  df-co 4437
This theorem is referenced by:  dfco2  4917  resco  4922  coiun  4927  cocnvcnv2  4929  cores2  4930  co02  4931  co01  4932  coi1  4933  coass  4936  cossxp  4940  funco  5040  fmptco  5448  cofunexg  5864  dftpos4  6010
  Copyright terms: Public domain W3C validator