Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffun2 | Unicode version |
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dffun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5190 | . 2 | |
2 | df-id 4271 | . . . . . 6 | |
3 | 2 | sseq2i 3169 | . . . . 5 |
4 | df-co 4613 | . . . . . 6 | |
5 | 4 | sseq1i 3168 | . . . . 5 |
6 | ssopab2b 4254 | . . . . 5 | |
7 | 3, 5, 6 | 3bitri 205 | . . . 4 |
8 | vex 2729 | . . . . . . . . . . . 12 | |
9 | vex 2729 | . . . . . . . . . . . 12 | |
10 | 8, 9 | brcnv 4787 | . . . . . . . . . . 11 |
11 | 10 | anbi1i 454 | . . . . . . . . . 10 |
12 | 11 | exbii 1593 | . . . . . . . . 9 |
13 | 12 | imbi1i 237 | . . . . . . . 8 |
14 | 19.23v 1871 | . . . . . . . 8 | |
15 | 13, 14 | bitr4i 186 | . . . . . . 7 |
16 | 15 | albii 1458 | . . . . . 6 |
17 | alcom 1466 | . . . . . 6 | |
18 | 16, 17 | bitri 183 | . . . . 5 |
19 | 18 | albii 1458 | . . . 4 |
20 | alcom 1466 | . . . 4 | |
21 | 7, 19, 20 | 3bitri 205 | . . 3 |
22 | 21 | anbi2i 453 | . 2 |
23 | 1, 22 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wss 3116 class class class wbr 3982 copab 4042 cid 4266 ccnv 4603 ccom 4608 wrel 4609 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: dffun4 5199 dffun6f 5201 sbcfung 5212 funcnveq 5251 fliftfun 5764 fclim 11235 |
Copyright terms: Public domain | W3C validator |