ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun2 Unicode version

Theorem dffun2 5208
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 5200 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
2 df-id 4278 . . . . . 6  |-  _I  =  { <. y ,  z
>.  |  y  =  z }
32sseq2i 3174 . . . . 5  |-  ( ( A  o.  `' A
)  C_  _I  <->  ( A  o.  `' A )  C_  { <. y ,  z >.  |  y  =  z } )
4 df-co 4620 . . . . . 6  |-  ( A  o.  `' A )  =  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) }
54sseq1i 3173 . . . . 5  |-  ( ( A  o.  `' A
)  C_  { <. y ,  z >.  |  y  =  z }  <->  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z } )
6 ssopab2b 4261 . . . . 5  |-  ( {
<. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z }  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
73, 5, 63bitri 205 . . . 4  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
8 vex 2733 . . . . . . . . . . . 12  |-  y  e. 
_V
9 vex 2733 . . . . . . . . . . . 12  |-  x  e. 
_V
108, 9brcnv 4794 . . . . . . . . . . 11  |-  ( y `' A x  <->  x A
y )
1110anbi1i 455 . . . . . . . . . 10  |-  ( ( y `' A x  /\  x A z )  <->  ( x A y  /\  x A z ) )
1211exbii 1598 . . . . . . . . 9  |-  ( E. x ( y `' A x  /\  x A z )  <->  E. x
( x A y  /\  x A z ) )
1312imbi1i 237 . . . . . . . 8  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
14 19.23v 1876 . . . . . . . 8  |-  ( A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
1513, 14bitr4i 186 . . . . . . 7  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1615albii 1463 . . . . . 6  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
17 alcom 1471 . . . . . 6  |-  ( A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
1816, 17bitri 183 . . . . 5  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1918albii 1463 . . . 4  |-  ( A. y A. z ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. y A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
20 alcom 1471 . . . 4  |-  ( A. y A. x A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
217, 19, 203bitri 205 . . 3  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
2221anbi2i 454 . 2  |-  ( ( Rel  A  /\  ( A  o.  `' A
)  C_  _I  )  <->  ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) ) )
231, 22bitri 183 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485    C_ wss 3121   class class class wbr 3989   {copab 4049    _I cid 4273   `'ccnv 4610    o. ccom 4615   Rel wrel 4616   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-cnv 4619  df-co 4620  df-fun 5200
This theorem is referenced by:  dffun4  5209  dffun6f  5211  sbcfung  5222  funcnveq  5261  fliftfun  5775  fclim  11257
  Copyright terms: Public domain W3C validator