ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun2 Unicode version

Theorem dffun2 5300
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 5292 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
2 df-id 4358 . . . . . 6  |-  _I  =  { <. y ,  z
>.  |  y  =  z }
32sseq2i 3228 . . . . 5  |-  ( ( A  o.  `' A
)  C_  _I  <->  ( A  o.  `' A )  C_  { <. y ,  z >.  |  y  =  z } )
4 df-co 4702 . . . . . 6  |-  ( A  o.  `' A )  =  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) }
54sseq1i 3227 . . . . 5  |-  ( ( A  o.  `' A
)  C_  { <. y ,  z >.  |  y  =  z }  <->  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z } )
6 ssopab2b 4341 . . . . 5  |-  ( {
<. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z }  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
73, 5, 63bitri 206 . . . 4  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
8 vex 2779 . . . . . . . . . . . 12  |-  y  e. 
_V
9 vex 2779 . . . . . . . . . . . 12  |-  x  e. 
_V
108, 9brcnv 4879 . . . . . . . . . . 11  |-  ( y `' A x  <->  x A
y )
1110anbi1i 458 . . . . . . . . . 10  |-  ( ( y `' A x  /\  x A z )  <->  ( x A y  /\  x A z ) )
1211exbii 1629 . . . . . . . . 9  |-  ( E. x ( y `' A x  /\  x A z )  <->  E. x
( x A y  /\  x A z ) )
1312imbi1i 238 . . . . . . . 8  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
14 19.23v 1907 . . . . . . . 8  |-  ( A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
1513, 14bitr4i 187 . . . . . . 7  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1615albii 1494 . . . . . 6  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
17 alcom 1502 . . . . . 6  |-  ( A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
1816, 17bitri 184 . . . . 5  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1918albii 1494 . . . 4  |-  ( A. y A. z ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. y A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
20 alcom 1502 . . . 4  |-  ( A. y A. x A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
217, 19, 203bitri 206 . . 3  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
2221anbi2i 457 . 2  |-  ( ( Rel  A  /\  ( A  o.  `' A
)  C_  _I  )  <->  ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) ) )
231, 22bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371   E.wex 1516    C_ wss 3174   class class class wbr 4059   {copab 4120    _I cid 4353   `'ccnv 4692    o. ccom 4697   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  dffun4  5301  dffun6f  5303  sbcfung  5314  fundif  5337  funcnveq  5356  fliftfun  5888  fclim  11720
  Copyright terms: Public domain W3C validator