| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvco | Unicode version | ||
| Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1654 |
. . . 4
| |
| 2 | vex 2802 |
. . . . 5
| |
| 3 | vex 2802 |
. . . . 5
| |
| 4 | 2, 3 | brco 4893 |
. . . 4
|
| 5 | vex 2802 |
. . . . . . 7
| |
| 6 | 3, 5 | brcnv 4905 |
. . . . . 6
|
| 7 | 5, 2 | brcnv 4905 |
. . . . . 6
|
| 8 | 6, 7 | anbi12i 460 |
. . . . 5
|
| 9 | 8 | exbii 1651 |
. . . 4
|
| 10 | 1, 4, 9 | 3bitr4i 212 |
. . 3
|
| 11 | 10 | opabbii 4151 |
. 2
|
| 12 | df-cnv 4727 |
. 2
| |
| 13 | df-co 4728 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-cnv 4727 df-co 4728 |
| This theorem is referenced by: rncoss 4995 rncoeq 4998 dmco 5237 cores2 5241 co01 5243 coi2 5245 relcnvtr 5248 dfdm2 5263 f1co 5543 cofunex2g 6255 caseinj 7256 djuinj 7273 cnco 14895 hmeoco 14990 |
| Copyright terms: Public domain | W3C validator |