ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvco Unicode version

Theorem cnvco 4732
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )

Proof of Theorem cnvco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1588 . . . 4  |-  ( E. z ( x B z  /\  z A y )  <->  E. z
( z A y  /\  x B z ) )
2 vex 2692 . . . . 5  |-  x  e. 
_V
3 vex 2692 . . . . 5  |-  y  e. 
_V
42, 3brco 4718 . . . 4  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
5 vex 2692 . . . . . . 7  |-  z  e. 
_V
63, 5brcnv 4730 . . . . . 6  |-  ( y `' A z  <->  z A
y )
75, 2brcnv 4730 . . . . . 6  |-  ( z `' B x  <->  x B
z )
86, 7anbi12i 456 . . . . 5  |-  ( ( y `' A z  /\  z `' B x )  <->  ( z A y  /\  x B z ) )
98exbii 1585 . . . 4  |-  ( E. z ( y `' A z  /\  z `' B x )  <->  E. z
( z A y  /\  x B z ) )
101, 4, 93bitr4i 211 . . 3  |-  ( x ( A  o.  B
) y  <->  E. z
( y `' A
z  /\  z `' B x ) )
1110opabbii 4003 . 2  |-  { <. y ,  x >.  |  x ( A  o.  B
) y }  =  { <. y ,  x >.  |  E. z ( y `' A z  /\  z `' B x ) }
12 df-cnv 4555 . 2  |-  `' ( A  o.  B )  =  { <. y ,  x >.  |  x
( A  o.  B
) y }
13 df-co 4556 . 2  |-  ( `' B  o.  `' A
)  =  { <. y ,  x >.  |  E. z ( y `' A z  /\  z `' B x ) }
1411, 12, 133eqtr4i 2171 1  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1332   E.wex 1469   class class class wbr 3937   {copab 3996   `'ccnv 4546    o. ccom 4551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-cnv 4555  df-co 4556
This theorem is referenced by:  rncoss  4817  rncoeq  4820  dmco  5055  cores2  5059  co01  5061  coi2  5063  relcnvtr  5066  dfdm2  5081  f1co  5348  cofunex2g  6018  caseinj  6982  djuinj  6999  cnco  12429  hmeoco  12524
  Copyright terms: Public domain W3C validator