ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomco Unicode version

Theorem xpcomco 6936
Description: Composition with the bijection of xpcomf1o 6935 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
xpcomf1o.1  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
xpcomco.1  |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )
Assertion
Ref Expression
xpcomco  |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, y, z, A    x, B, y, z    y, F, z
Allowed substitution hints:    C( x, y, z)    F( x)    G( x, y, z)

Proof of Theorem xpcomco
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomf1o.1 . . . . . . . . . 10  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
21xpcomf1o 6935 . . . . . . . . 9  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
3 f1ofun 5536 . . . . . . . . 9  |-  ( F : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)  ->  Fun  F )
4 funbrfv2b 5636 . . . . . . . . 9  |-  ( Fun 
F  ->  ( u F w  <->  ( u  e. 
dom  F  /\  ( F `  u )  =  w ) ) )
52, 3, 4mp2b 8 . . . . . . . 8  |-  ( u F w  <->  ( u  e.  dom  F  /\  ( F `  u )  =  w ) )
6 ancom 266 . . . . . . . 8  |-  ( ( u  e.  dom  F  /\  ( F `  u
)  =  w )  <-> 
( ( F `  u )  =  w  /\  u  e.  dom  F ) )
7 eqcom 2208 . . . . . . . . 9  |-  ( ( F `  u )  =  w  <->  w  =  ( F `  u ) )
8 f1odm 5538 . . . . . . . . . . 11  |-  ( F : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)  ->  dom  F  =  ( A  X.  B
) )
92, 8ax-mp 5 . . . . . . . . . 10  |-  dom  F  =  ( A  X.  B )
109eleq2i 2273 . . . . . . . . 9  |-  ( u  e.  dom  F  <->  u  e.  ( A  X.  B
) )
117, 10anbi12i 460 . . . . . . . 8  |-  ( ( ( F `  u
)  =  w  /\  u  e.  dom  F )  <-> 
( w  =  ( F `  u )  /\  u  e.  ( A  X.  B ) ) )
125, 6, 113bitri 206 . . . . . . 7  |-  ( u F w  <->  ( w  =  ( F `  u )  /\  u  e.  ( A  X.  B
) ) )
1312anbi1i 458 . . . . . 6  |-  ( ( u F w  /\  w G v )  <->  ( (
w  =  ( F `
 u )  /\  u  e.  ( A  X.  B ) )  /\  w G v ) )
14 anass 401 . . . . . 6  |-  ( ( ( w  =  ( F `  u )  /\  u  e.  ( A  X.  B ) )  /\  w G v )  <->  ( w  =  ( F `  u )  /\  (
u  e.  ( A  X.  B )  /\  w G v ) ) )
1513, 14bitri 184 . . . . 5  |-  ( ( u F w  /\  w G v )  <->  ( w  =  ( F `  u )  /\  (
u  e.  ( A  X.  B )  /\  w G v ) ) )
1615exbii 1629 . . . 4  |-  ( E. w ( u F w  /\  w G v )  <->  E. w
( w  =  ( F `  u )  /\  ( u  e.  ( A  X.  B
)  /\  w G
v ) ) )
17 vex 2776 . . . . . . 7  |-  u  e. 
_V
181mptfvex 5678 . . . . . . 7  |-  ( ( A. x U. `' { x }  e.  _V  /\  u  e.  _V )  ->  ( F `  u )  e.  _V )
1917, 18mpan2 425 . . . . . 6  |-  ( A. x U. `' { x }  e.  _V  ->  ( F `  u )  e.  _V )
20 vex 2776 . . . . . . . . 9  |-  x  e. 
_V
2120snex 4237 . . . . . . . 8  |-  { x }  e.  _V
2221cnvex 5230 . . . . . . 7  |-  `' {
x }  e.  _V
2322uniex 4492 . . . . . 6  |-  U. `' { x }  e.  _V
2419, 23mpg 1475 . . . . 5  |-  ( F `
 u )  e. 
_V
25 breq1 4054 . . . . . 6  |-  ( w  =  ( F `  u )  ->  (
w G v  <->  ( F `  u ) G v ) )
2625anbi2d 464 . . . . 5  |-  ( w  =  ( F `  u )  ->  (
( u  e.  ( A  X.  B )  /\  w G v )  <->  ( u  e.  ( A  X.  B
)  /\  ( F `  u ) G v ) ) )
2724, 26ceqsexv 2813 . . . 4  |-  ( E. w ( w  =  ( F `  u
)  /\  ( u  e.  ( A  X.  B
)  /\  w G
v ) )  <->  ( u  e.  ( A  X.  B
)  /\  ( F `  u ) G v ) )
28 elxp 4700 . . . . . 6  |-  ( u  e.  ( A  X.  B )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) ) )
2928anbi1i 458 . . . . 5  |-  ( ( u  e.  ( A  X.  B )  /\  ( F `  u ) G v )  <->  ( E. z E. y ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v ) )
30 nfcv 2349 . . . . . . 7  |-  F/_ z
( F `  u
)
31 xpcomco.1 . . . . . . . 8  |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )
32 nfmpo2 6026 . . . . . . . 8  |-  F/_ z
( y  e.  B ,  z  e.  A  |->  C )
3331, 32nfcxfr 2346 . . . . . . 7  |-  F/_ z G
34 nfcv 2349 . . . . . . 7  |-  F/_ z
v
3530, 33, 34nfbr 4098 . . . . . 6  |-  F/ z ( F `  u
) G v
363519.41 1710 . . . . 5  |-  ( E. z ( E. y
( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( E. z E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) )  /\  ( F `  u ) G v ) )
37 nfcv 2349 . . . . . . . . 9  |-  F/_ y
( F `  u
)
38 nfmpo1 6025 . . . . . . . . . 10  |-  F/_ y
( y  e.  B ,  z  e.  A  |->  C )
3931, 38nfcxfr 2346 . . . . . . . . 9  |-  F/_ y G
40 nfcv 2349 . . . . . . . . 9  |-  F/_ y
v
4137, 39, 40nfbr 4098 . . . . . . . 8  |-  F/ y ( F `  u
) G v
424119.41 1710 . . . . . . 7  |-  ( E. y ( ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  ( E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) )  /\  ( F `  u ) G v ) )
43 anass 401 . . . . . . . . 9  |-  ( ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  ( F `  u ) G v ) ) )
44 fveq2 5589 . . . . . . . . . . . . . 14  |-  ( u  =  <. z ,  y
>.  ->  ( F `  u )  =  ( F `  <. z ,  y >. )
)
45 opelxpi 4715 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  y  e.  B )  -> 
<. z ,  y >.  e.  ( A  X.  B
) )
46 sneq 3649 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  <. z ,  y
>.  ->  { x }  =  { <. z ,  y
>. } )
4746cnveqd 4862 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. z ,  y
>.  ->  `' { x }  =  `' { <. z ,  y >. } )
4847unieqd 3867 . . . . . . . . . . . . . . . . 17  |-  ( x  =  <. z ,  y
>.  ->  U. `' { x }  =  U. `' { <. z ,  y >. } )
49 vex 2776 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
50 vex 2776 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
51 opswapg 5178 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  _V  /\  y  e.  _V )  ->  U. `' { <. z ,  y >. }  =  <. y ,  z >.
)
5249, 50, 51mp2an 426 . . . . . . . . . . . . . . . . 17  |-  U. `' { <. z ,  y
>. }  =  <. y ,  z >.
5348, 52eqtrdi 2255 . . . . . . . . . . . . . . . 16  |-  ( x  =  <. z ,  y
>.  ->  U. `' { x }  =  <. y ,  z >. )
5450, 49opex 4281 . . . . . . . . . . . . . . . 16  |-  <. y ,  z >.  e.  _V
5553, 1, 54fvmpt 5669 . . . . . . . . . . . . . . 15  |-  ( <.
z ,  y >.  e.  ( A  X.  B
)  ->  ( F `  <. z ,  y
>. )  =  <. y ,  z >. )
5645, 55syl 14 . . . . . . . . . . . . . 14  |-  ( ( z  e.  A  /\  y  e.  B )  ->  ( F `  <. z ,  y >. )  =  <. y ,  z
>. )
5744, 56sylan9eq 2259 . . . . . . . . . . . . 13  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( F `  u )  =  <. y ,  z >. )
5857breq1d 4061 . . . . . . . . . . . 12  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( ( F `  u ) G v  <->  <. y ,  z >. G v ) )
59 df-br 4052 . . . . . . . . . . . . . . . 16  |-  ( <.
y ,  z >. G v  <->  <. <. y ,  z >. ,  v
>.  e.  G )
60 df-mpo 5962 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  B ,  z  e.  A  |->  C )  =  { <. <. y ,  z >. ,  v
>.  |  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) }
6131, 60eqtri 2227 . . . . . . . . . . . . . . . . 17  |-  G  =  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) }
6261eleq2i 2273 . . . . . . . . . . . . . . . 16  |-  ( <. <. y ,  z >. ,  v >.  e.  G  <->  <. <. y ,  z >. ,  v >.  e.  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) } )
63 oprabid 5989 . . . . . . . . . . . . . . . 16  |-  ( <. <. y ,  z >. ,  v >.  e.  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) }  <->  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) )
6459, 62, 633bitri 206 . . . . . . . . . . . . . . 15  |-  ( <.
y ,  z >. G v  <->  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) )
6564baib 921 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  z  e.  A )  ->  ( <. y ,  z
>. G v  <->  v  =  C ) )
6665ancoms 268 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  /\  y  e.  B )  ->  ( <. y ,  z
>. G v  <->  v  =  C ) )
6766adantl 277 . . . . . . . . . . . 12  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( <. y ,  z >. G v  <-> 
v  =  C ) )
6858, 67bitrd 188 . . . . . . . . . . 11  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( ( F `  u ) G v  <->  v  =  C ) )
6968pm5.32da 452 . . . . . . . . . 10  |-  ( u  =  <. z ,  y
>.  ->  ( ( ( z  e.  A  /\  y  e.  B )  /\  ( F `  u
) G v )  <-> 
( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7069pm5.32i 454 . . . . . . . . 9  |-  ( ( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  ( F `  u ) G v ) )  <->  ( u  =  <. z ,  y
>.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7143, 70bitri 184 . . . . . . . 8  |-  ( ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7271exbii 1629 . . . . . . 7  |-  ( E. y ( ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7342, 72bitr3i 186 . . . . . 6  |-  ( ( E. y ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7473exbii 1629 . . . . 5  |-  ( E. z ( E. y
( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  E. z E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7529, 36, 743bitr2i 208 . . . 4  |-  ( ( u  e.  ( A  X.  B )  /\  ( F `  u ) G v )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7616, 27, 753bitri 206 . . 3  |-  ( E. w ( u F w  /\  w G v )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7776opabbii 4119 . 2  |-  { <. u ,  v >.  |  E. w ( u F w  /\  w G v ) }  =  { <. u ,  v
>.  |  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
78 df-co 4692 . 2  |-  ( G  o.  F )  =  { <. u ,  v
>.  |  E. w
( u F w  /\  w G v ) }
79 df-mpo 5962 . . 3  |-  ( z  e.  A ,  y  e.  B  |->  C )  =  { <. <. z ,  y >. ,  v
>.  |  ( (
z  e.  A  /\  y  e.  B )  /\  v  =  C
) }
80 dfoprab2 6005 . . 3  |-  { <. <.
z ,  y >. ,  v >.  |  ( ( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) }  =  { <. u ,  v
>.  |  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
8179, 80eqtri 2227 . 2  |-  ( z  e.  A ,  y  e.  B  |->  C )  =  { <. u ,  v >.  |  E. z E. y ( u  =  <. z ,  y
>.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
8277, 78, 813eqtr4i 2237 1  |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773   {csn 3638   <.cop 3641   U.cuni 3856   class class class wbr 4051   {copab 4112    |-> cmpt 4113    X. cxp 4681   `'ccnv 4682   dom cdm 4683    o. ccom 4687   Fun wfun 5274   -1-1-onto->wf1o 5279   ` cfv 5280   {coprab 5958    e. cmpo 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator