ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomco Unicode version

Theorem xpcomco 6792
Description: Composition with the bijection of xpcomf1o 6791 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
xpcomf1o.1  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
xpcomco.1  |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )
Assertion
Ref Expression
xpcomco  |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, y, z, A    x, B, y, z    y, F, z
Allowed substitution hints:    C( x, y, z)    F( x)    G( x, y, z)

Proof of Theorem xpcomco
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomf1o.1 . . . . . . . . . 10  |-  F  =  ( x  e.  ( A  X.  B ) 
|->  U. `' { x } )
21xpcomf1o 6791 . . . . . . . . 9  |-  F :
( A  X.  B
)
-1-1-onto-> ( B  X.  A
)
3 f1ofun 5434 . . . . . . . . 9  |-  ( F : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)  ->  Fun  F )
4 funbrfv2b 5531 . . . . . . . . 9  |-  ( Fun 
F  ->  ( u F w  <->  ( u  e. 
dom  F  /\  ( F `  u )  =  w ) ) )
52, 3, 4mp2b 8 . . . . . . . 8  |-  ( u F w  <->  ( u  e.  dom  F  /\  ( F `  u )  =  w ) )
6 ancom 264 . . . . . . . 8  |-  ( ( u  e.  dom  F  /\  ( F `  u
)  =  w )  <-> 
( ( F `  u )  =  w  /\  u  e.  dom  F ) )
7 eqcom 2167 . . . . . . . . 9  |-  ( ( F `  u )  =  w  <->  w  =  ( F `  u ) )
8 f1odm 5436 . . . . . . . . . . 11  |-  ( F : ( A  X.  B ) -1-1-onto-> ( B  X.  A
)  ->  dom  F  =  ( A  X.  B
) )
92, 8ax-mp 5 . . . . . . . . . 10  |-  dom  F  =  ( A  X.  B )
109eleq2i 2233 . . . . . . . . 9  |-  ( u  e.  dom  F  <->  u  e.  ( A  X.  B
) )
117, 10anbi12i 456 . . . . . . . 8  |-  ( ( ( F `  u
)  =  w  /\  u  e.  dom  F )  <-> 
( w  =  ( F `  u )  /\  u  e.  ( A  X.  B ) ) )
125, 6, 113bitri 205 . . . . . . 7  |-  ( u F w  <->  ( w  =  ( F `  u )  /\  u  e.  ( A  X.  B
) ) )
1312anbi1i 454 . . . . . 6  |-  ( ( u F w  /\  w G v )  <->  ( (
w  =  ( F `
 u )  /\  u  e.  ( A  X.  B ) )  /\  w G v ) )
14 anass 399 . . . . . 6  |-  ( ( ( w  =  ( F `  u )  /\  u  e.  ( A  X.  B ) )  /\  w G v )  <->  ( w  =  ( F `  u )  /\  (
u  e.  ( A  X.  B )  /\  w G v ) ) )
1513, 14bitri 183 . . . . 5  |-  ( ( u F w  /\  w G v )  <->  ( w  =  ( F `  u )  /\  (
u  e.  ( A  X.  B )  /\  w G v ) ) )
1615exbii 1593 . . . 4  |-  ( E. w ( u F w  /\  w G v )  <->  E. w
( w  =  ( F `  u )  /\  ( u  e.  ( A  X.  B
)  /\  w G
v ) ) )
17 vex 2729 . . . . . . 7  |-  u  e. 
_V
181mptfvex 5571 . . . . . . 7  |-  ( ( A. x U. `' { x }  e.  _V  /\  u  e.  _V )  ->  ( F `  u )  e.  _V )
1917, 18mpan2 422 . . . . . 6  |-  ( A. x U. `' { x }  e.  _V  ->  ( F `  u )  e.  _V )
20 vex 2729 . . . . . . . . 9  |-  x  e. 
_V
2120snex 4164 . . . . . . . 8  |-  { x }  e.  _V
2221cnvex 5142 . . . . . . 7  |-  `' {
x }  e.  _V
2322uniex 4415 . . . . . 6  |-  U. `' { x }  e.  _V
2419, 23mpg 1439 . . . . 5  |-  ( F `
 u )  e. 
_V
25 breq1 3985 . . . . . 6  |-  ( w  =  ( F `  u )  ->  (
w G v  <->  ( F `  u ) G v ) )
2625anbi2d 460 . . . . 5  |-  ( w  =  ( F `  u )  ->  (
( u  e.  ( A  X.  B )  /\  w G v )  <->  ( u  e.  ( A  X.  B
)  /\  ( F `  u ) G v ) ) )
2724, 26ceqsexv 2765 . . . 4  |-  ( E. w ( w  =  ( F `  u
)  /\  ( u  e.  ( A  X.  B
)  /\  w G
v ) )  <->  ( u  e.  ( A  X.  B
)  /\  ( F `  u ) G v ) )
28 elxp 4621 . . . . . 6  |-  ( u  e.  ( A  X.  B )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) ) )
2928anbi1i 454 . . . . 5  |-  ( ( u  e.  ( A  X.  B )  /\  ( F `  u ) G v )  <->  ( E. z E. y ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v ) )
30 nfcv 2308 . . . . . . 7  |-  F/_ z
( F `  u
)
31 xpcomco.1 . . . . . . . 8  |-  G  =  ( y  e.  B ,  z  e.  A  |->  C )
32 nfmpo2 5910 . . . . . . . 8  |-  F/_ z
( y  e.  B ,  z  e.  A  |->  C )
3331, 32nfcxfr 2305 . . . . . . 7  |-  F/_ z G
34 nfcv 2308 . . . . . . 7  |-  F/_ z
v
3530, 33, 34nfbr 4028 . . . . . 6  |-  F/ z ( F `  u
) G v
363519.41 1674 . . . . 5  |-  ( E. z ( E. y
( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( E. z E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) )  /\  ( F `  u ) G v ) )
37 nfcv 2308 . . . . . . . . 9  |-  F/_ y
( F `  u
)
38 nfmpo1 5909 . . . . . . . . . 10  |-  F/_ y
( y  e.  B ,  z  e.  A  |->  C )
3931, 38nfcxfr 2305 . . . . . . . . 9  |-  F/_ y G
40 nfcv 2308 . . . . . . . . 9  |-  F/_ y
v
4137, 39, 40nfbr 4028 . . . . . . . 8  |-  F/ y ( F `  u
) G v
424119.41 1674 . . . . . . 7  |-  ( E. y ( ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  ( E. y ( u  = 
<. z ,  y >.  /\  ( z  e.  A  /\  y  e.  B
) )  /\  ( F `  u ) G v ) )
43 anass 399 . . . . . . . . 9  |-  ( ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  ( F `  u ) G v ) ) )
44 fveq2 5486 . . . . . . . . . . . . . 14  |-  ( u  =  <. z ,  y
>.  ->  ( F `  u )  =  ( F `  <. z ,  y >. )
)
45 opelxpi 4636 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  y  e.  B )  -> 
<. z ,  y >.  e.  ( A  X.  B
) )
46 sneq 3587 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  <. z ,  y
>.  ->  { x }  =  { <. z ,  y
>. } )
4746cnveqd 4780 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. z ,  y
>.  ->  `' { x }  =  `' { <. z ,  y >. } )
4847unieqd 3800 . . . . . . . . . . . . . . . . 17  |-  ( x  =  <. z ,  y
>.  ->  U. `' { x }  =  U. `' { <. z ,  y >. } )
49 vex 2729 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
50 vex 2729 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
51 opswapg 5090 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  _V  /\  y  e.  _V )  ->  U. `' { <. z ,  y >. }  =  <. y ,  z >.
)
5249, 50, 51mp2an 423 . . . . . . . . . . . . . . . . 17  |-  U. `' { <. z ,  y
>. }  =  <. y ,  z >.
5348, 52eqtrdi 2215 . . . . . . . . . . . . . . . 16  |-  ( x  =  <. z ,  y
>.  ->  U. `' { x }  =  <. y ,  z >. )
5450, 49opex 4207 . . . . . . . . . . . . . . . 16  |-  <. y ,  z >.  e.  _V
5553, 1, 54fvmpt 5563 . . . . . . . . . . . . . . 15  |-  ( <.
z ,  y >.  e.  ( A  X.  B
)  ->  ( F `  <. z ,  y
>. )  =  <. y ,  z >. )
5645, 55syl 14 . . . . . . . . . . . . . 14  |-  ( ( z  e.  A  /\  y  e.  B )  ->  ( F `  <. z ,  y >. )  =  <. y ,  z
>. )
5744, 56sylan9eq 2219 . . . . . . . . . . . . 13  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( F `  u )  =  <. y ,  z >. )
5857breq1d 3992 . . . . . . . . . . . 12  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( ( F `  u ) G v  <->  <. y ,  z >. G v ) )
59 df-br 3983 . . . . . . . . . . . . . . . 16  |-  ( <.
y ,  z >. G v  <->  <. <. y ,  z >. ,  v
>.  e.  G )
60 df-mpo 5847 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  B ,  z  e.  A  |->  C )  =  { <. <. y ,  z >. ,  v
>.  |  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) }
6131, 60eqtri 2186 . . . . . . . . . . . . . . . . 17  |-  G  =  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) }
6261eleq2i 2233 . . . . . . . . . . . . . . . 16  |-  ( <. <. y ,  z >. ,  v >.  e.  G  <->  <. <. y ,  z >. ,  v >.  e.  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) } )
63 oprabid 5874 . . . . . . . . . . . . . . . 16  |-  ( <. <. y ,  z >. ,  v >.  e.  { <. <. y ,  z
>. ,  v >.  |  ( ( y  e.  B  /\  z  e.  A )  /\  v  =  C ) }  <->  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) )
6459, 62, 633bitri 205 . . . . . . . . . . . . . . 15  |-  ( <.
y ,  z >. G v  <->  ( (
y  e.  B  /\  z  e.  A )  /\  v  =  C
) )
6564baib 909 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  z  e.  A )  ->  ( <. y ,  z
>. G v  <->  v  =  C ) )
6665ancoms 266 . . . . . . . . . . . . 13  |-  ( ( z  e.  A  /\  y  e.  B )  ->  ( <. y ,  z
>. G v  <->  v  =  C ) )
6766adantl 275 . . . . . . . . . . . 12  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( <. y ,  z >. G v  <-> 
v  =  C ) )
6858, 67bitrd 187 . . . . . . . . . . 11  |-  ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  ->  ( ( F `  u ) G v  <->  v  =  C ) )
6968pm5.32da 448 . . . . . . . . . 10  |-  ( u  =  <. z ,  y
>.  ->  ( ( ( z  e.  A  /\  y  e.  B )  /\  ( F `  u
) G v )  <-> 
( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7069pm5.32i 450 . . . . . . . . 9  |-  ( ( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  ( F `  u ) G v ) )  <->  ( u  =  <. z ,  y
>.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7143, 70bitri 183 . . . . . . . 8  |-  ( ( ( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7271exbii 1593 . . . . . . 7  |-  ( E. y ( ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7342, 72bitr3i 185 . . . . . 6  |-  ( ( E. y ( u  =  <. z ,  y
>.  /\  ( z  e.  A  /\  y  e.  B ) )  /\  ( F `  u ) G v )  <->  E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7473exbii 1593 . . . . 5  |-  ( E. z ( E. y
( u  =  <. z ,  y >.  /\  (
z  e.  A  /\  y  e.  B )
)  /\  ( F `  u ) G v )  <->  E. z E. y
( u  =  <. z ,  y >.  /\  (
( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) ) )
7529, 36, 743bitr2i 207 . . . 4  |-  ( ( u  e.  ( A  X.  B )  /\  ( F `  u ) G v )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7616, 27, 753bitri 205 . . 3  |-  ( E. w ( u F w  /\  w G v )  <->  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) )
7776opabbii 4049 . 2  |-  { <. u ,  v >.  |  E. w ( u F w  /\  w G v ) }  =  { <. u ,  v
>.  |  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
78 df-co 4613 . 2  |-  ( G  o.  F )  =  { <. u ,  v
>.  |  E. w
( u F w  /\  w G v ) }
79 df-mpo 5847 . . 3  |-  ( z  e.  A ,  y  e.  B  |->  C )  =  { <. <. z ,  y >. ,  v
>.  |  ( (
z  e.  A  /\  y  e.  B )  /\  v  =  C
) }
80 dfoprab2 5889 . . 3  |-  { <. <.
z ,  y >. ,  v >.  |  ( ( z  e.  A  /\  y  e.  B
)  /\  v  =  C ) }  =  { <. u ,  v
>.  |  E. z E. y ( u  = 
<. z ,  y >.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
8179, 80eqtri 2186 . 2  |-  ( z  e.  A ,  y  e.  B  |->  C )  =  { <. u ,  v >.  |  E. z E. y ( u  =  <. z ,  y
>.  /\  ( ( z  e.  A  /\  y  e.  B )  /\  v  =  C ) ) }
8277, 78, 813eqtr4i 2196 1  |-  ( G  o.  F )  =  ( z  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579   U.cuni 3789   class class class wbr 3982   {copab 4042    |-> cmpt 4043    X. cxp 4602   `'ccnv 4603   dom cdm 4604    o. ccom 4608   Fun wfun 5182   -1-1-onto->wf1o 5187   ` cfv 5188   {coprab 5843    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator