ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coundir Unicode version

Theorem coundir 5149
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundir  |-  ( ( A  u.  B )  o.  C )  =  ( ( A  o.  C )  u.  ( B  o.  C )
)

Proof of Theorem coundir
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 4097 . . 3  |-  ( {
<. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  u.  { <. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )  =  { <. x ,  z >.  |  ( E. y ( x C y  /\  y A z )  \/ 
E. y ( x C y  /\  y B z ) ) }
2 brun 4069 . . . . . . . 8  |-  ( y ( A  u.  B
) z  <->  ( y A z  \/  y B z ) )
32anbi2i 457 . . . . . . 7  |-  ( ( x C y  /\  y ( A  u.  B ) z )  <-> 
( x C y  /\  ( y A z  \/  y B z ) ) )
4 andi 819 . . . . . . 7  |-  ( ( x C y  /\  ( y A z  \/  y B z ) )  <->  ( (
x C y  /\  y A z )  \/  ( x C y  /\  y B z ) ) )
53, 4bitri 184 . . . . . 6  |-  ( ( x C y  /\  y ( A  u.  B ) z )  <-> 
( ( x C y  /\  y A z )  \/  (
x C y  /\  y B z ) ) )
65exbii 1616 . . . . 5  |-  ( E. y ( x C y  /\  y ( A  u.  B ) z )  <->  E. y
( ( x C y  /\  y A z )  \/  (
x C y  /\  y B z ) ) )
7 19.43 1639 . . . . 5  |-  ( E. y ( ( x C y  /\  y A z )  \/  ( x C y  /\  y B z ) )  <->  ( E. y ( x C y  /\  y A z )  \/  E. y ( x C y  /\  y B z ) ) )
86, 7bitr2i 185 . . . 4  |-  ( ( E. y ( x C y  /\  y A z )  \/ 
E. y ( x C y  /\  y B z ) )  <->  E. y ( x C y  /\  y ( A  u.  B ) z ) )
98opabbii 4085 . . 3  |-  { <. x ,  z >.  |  ( E. y ( x C y  /\  y A z )  \/ 
E. y ( x C y  /\  y B z ) ) }  =  { <. x ,  z >.  |  E. y ( x C y  /\  y ( A  u.  B ) z ) }
101, 9eqtri 2210 . 2  |-  ( {
<. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  u.  { <. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )  =  { <. x ,  z >.  |  E. y ( x C y  /\  y ( A  u.  B ) z ) }
11 df-co 4653 . . 3  |-  ( A  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y A z ) }
12 df-co 4653 . . 3  |-  ( B  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y B z ) }
1311, 12uneq12i 3302 . 2  |-  ( ( A  o.  C )  u.  ( B  o.  C ) )  =  ( { <. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  u.  {
<. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )
14 df-co 4653 . 2  |-  ( ( A  u.  B )  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y ( A  u.  B ) z ) }
1510, 13, 143eqtr4ri 2221 1  |-  ( ( A  u.  B )  o.  C )  =  ( ( A  o.  C )  u.  ( B  o.  C )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    u. cun 3142   class class class wbr 4018   {copab 4078    o. ccom 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-br 4019  df-opab 4080  df-co 4653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator