ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcog Unicode version

Theorem brcog 4889
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem brcog
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4086 . . . 4  |-  ( y  =  A  ->  (
y D x  <->  A D x ) )
2 breq2 4087 . . . 4  |-  ( z  =  B  ->  (
x C z  <->  x C B ) )
31, 2bi2anan9 608 . . 3  |-  ( ( y  =  A  /\  z  =  B )  ->  ( ( y D x  /\  x C z )  <->  ( A D x  /\  x C B ) ) )
43exbidv 1871 . 2  |-  ( ( y  =  A  /\  z  =  B )  ->  ( E. x ( y D x  /\  x C z )  <->  E. x
( A D x  /\  x C B ) ) )
5 df-co 4728 . 2  |-  ( C  o.  D )  =  { <. y ,  z
>.  |  E. x
( y D x  /\  x C z ) }
64, 5brabga 4352 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   class class class wbr 4083    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-co 4728
This theorem is referenced by:  opelco2g  4890  brcogw  4891  brco  4893  brcodir  5116  foeqcnvco  5914  brtpos2  6397  ertr  6695  znleval  14617
  Copyright terms: Public domain W3C validator