ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcog Unicode version

Theorem brcog 4591
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem brcog
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3840 . . . 4  |-  ( y  =  A  ->  (
y D x  <->  A D x ) )
2 breq2 3841 . . . 4  |-  ( z  =  B  ->  (
x C z  <->  x C B ) )
31, 2bi2anan9 573 . . 3  |-  ( ( y  =  A  /\  z  =  B )  ->  ( ( y D x  /\  x C z )  <->  ( A D x  /\  x C B ) ) )
43exbidv 1753 . 2  |-  ( ( y  =  A  /\  z  =  B )  ->  ( E. x ( y D x  /\  x C z )  <->  E. x
( A D x  /\  x C B ) ) )
5 df-co 4437 . 2  |-  ( C  o.  D )  =  { <. y ,  z
>.  |  E. x
( y D x  /\  x C z ) }
64, 5brabga 4082 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   class class class wbr 3837    o. ccom 4432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-co 4437
This theorem is referenced by:  opelco2g  4592  brcogw  4593  brco  4595  brcodir  4806  foeqcnvco  5551  brtpos2  5998  ertr  6287
  Copyright terms: Public domain W3C validator