ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcog Unicode version

Theorem brcog 4771
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem brcog
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3985 . . . 4  |-  ( y  =  A  ->  (
y D x  <->  A D x ) )
2 breq2 3986 . . . 4  |-  ( z  =  B  ->  (
x C z  <->  x C B ) )
31, 2bi2anan9 596 . . 3  |-  ( ( y  =  A  /\  z  =  B )  ->  ( ( y D x  /\  x C z )  <->  ( A D x  /\  x C B ) ) )
43exbidv 1813 . 2  |-  ( ( y  =  A  /\  z  =  B )  ->  ( E. x ( y D x  /\  x C z )  <->  E. x
( A D x  /\  x C B ) ) )
5 df-co 4613 . 2  |-  ( C  o.  D )  =  { <. y ,  z
>.  |  E. x
( y D x  /\  x C z ) }
64, 5brabga 4242 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   class class class wbr 3982    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-co 4613
This theorem is referenced by:  opelco2g  4772  brcogw  4773  brco  4775  brcodir  4991  foeqcnvco  5758  brtpos2  6219  ertr  6516
  Copyright terms: Public domain W3C validator