ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coss1 Unicode version

Theorem coss1 4766
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1  |-  ( A 
C_  B  ->  ( A  o.  C )  C_  ( B  o.  C
) )

Proof of Theorem coss1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( A 
C_  B  ->  A  C_  B )
21ssbrd 4032 . . . . 5  |-  ( A 
C_  B  ->  (
y A z  -> 
y B z ) )
32anim2d 335 . . . 4  |-  ( A 
C_  B  ->  (
( x C y  /\  y A z )  ->  ( x C y  /\  y B z ) ) )
43eximdv 1873 . . 3  |-  ( A 
C_  B  ->  ( E. y ( x C y  /\  y A z )  ->  E. y
( x C y  /\  y B z ) ) )
54ssopab2dv 4263 . 2  |-  ( A 
C_  B  ->  { <. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  C_  {
<. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )
6 df-co 4620 . 2  |-  ( A  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y A z ) }
7 df-co 4620 . 2  |-  ( B  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y B z ) }
85, 6, 73sstr4g 3190 1  |-  ( A 
C_  B  ->  ( A  o.  C )  C_  ( B  o.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485    C_ wss 3121   class class class wbr 3989   {copab 4049    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134  df-br 3990  df-opab 4051  df-co 4620
This theorem is referenced by:  coeq1  4768  funss  5217  tposss  6225
  Copyright terms: Public domain W3C validator