Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coss1 | Unicode version |
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
coss1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . 6 | |
2 | 1 | ssbrd 4041 | . . . . 5 |
3 | 2 | anim2d 337 | . . . 4 |
4 | 3 | eximdv 1878 | . . 3 |
5 | 4 | ssopab2dv 4272 | . 2 |
6 | df-co 4629 | . 2 | |
7 | df-co 4629 | . 2 | |
8 | 5, 6, 7 | 3sstr4g 3196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wex 1490 wss 3127 class class class wbr 3998 copab 4058 ccom 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-in 3133 df-ss 3140 df-br 3999 df-opab 4060 df-co 4629 |
This theorem is referenced by: coeq1 4777 funss 5227 tposss 6237 |
Copyright terms: Public domain | W3C validator |