ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfun Unicode version

Theorem frecfun 6450
Description: Finite recursion produces a function. See also frecfnom 6456 which also states that the domain of that function is  om but which puts conditions on  A and  F. (Contributed by Jim Kingdon, 13-Feb-2022.)
Assertion
Ref Expression
frecfun  |-  Fun frec ( F ,  A )

Proof of Theorem frecfun
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6375 . . 3  |-  Fun recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
2 funres 5296 . . 3  |-  ( Fun recs
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  ->  Fun  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
31, 2ax-mp 5 . 2  |-  Fun  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
4 df-frec 6446 . . 3  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
54funeqi 5276 . 2  |-  ( Fun frec
( F ,  A
)  <->  Fun  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
63, 5mpbir 146 1  |-  Fun frec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760   (/)c0 3447    |-> cmpt 4091   suc csuc 4397   omcom 4623   dom cdm 4660    |` cres 4662   Fun wfun 5249   ` cfv 5255  recscrecs 6359  freccfrec 6445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-recs 6360  df-frec 6446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator