ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfun Unicode version

Theorem frecfun 6409
Description: Finite recursion produces a function. See also frecfnom 6415 which also states that the domain of that function is  om but which puts conditions on  A and  F. (Contributed by Jim Kingdon, 13-Feb-2022.)
Assertion
Ref Expression
frecfun  |-  Fun frec ( F ,  A )

Proof of Theorem frecfun
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6334 . . 3  |-  Fun recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
2 funres 5269 . . 3  |-  ( Fun recs
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  ->  Fun  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
31, 2ax-mp 5 . 2  |-  Fun  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
4 df-frec 6405 . . 3  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
54funeqi 5249 . 2  |-  ( Fun frec
( F ,  A
)  <->  Fun  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
63, 5mpbir 146 1  |-  Fun frec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1363    e. wcel 2158   {cab 2173   E.wrex 2466   _Vcvv 2749   (/)c0 3434    |-> cmpt 4076   suc csuc 4377   omcom 4601   dom cdm 4638    |` cres 4640   Fun wfun 5222   ` cfv 5228  recscrecs 6318  freccfrec 6404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-recs 6319  df-frec 6405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator