Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecfun | Unicode version |
Description: Finite recursion produces a function. See also frecfnom 6369 which also states that the domain of that function is but which puts conditions on and . (Contributed by Jim Kingdon, 13-Feb-2022.) |
Ref | Expression |
---|---|
frecfun | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrfun 6288 | . . 3 recs | |
2 | funres 5229 | . . 3 recs recs | |
3 | 1, 2 | ax-mp 5 | . 2 recs |
4 | df-frec 6359 | . . 3 frec recs | |
5 | 4 | funeqi 5209 | . 2 frec recs |
6 | 3, 5 | mpbir 145 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 c0 3409 cmpt 4043 csuc 4343 com 4567 cdm 4604 cres 4606 wfun 5182 cfv 5188 recscrecs 6272 freccfrec 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 df-frec 6359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |