ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecex Unicode version

Theorem frecex 6503
Description: Finite recursion produces a set. (Contributed by Jim Kingdon, 20-Aug-2021.)
Assertion
Ref Expression
frecex  |- frec ( F ,  A )  e. 
_V

Proof of Theorem frecex
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6500 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
2 tfrfun 6429 . . 3  |-  Fun recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
3 omex 4659 . . 3  |-  om  e.  _V
4 resfunexg 5828 . . 3  |-  ( ( Fun recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  /\  om  e.  _V )  ->  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )  e.  _V )
52, 3, 4mp2an 426 . 2  |-  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )  e.  _V
61, 5eqeltri 2280 1  |- frec ( F ,  A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776   (/)c0 3468    |-> cmpt 4121   suc csuc 4430   omcom 4656   dom cdm 4693    |` cres 4695   Fun wfun 5284   ` cfv 5290  recscrecs 6413  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  seqex  10631  nninfct  12477  ctinfom  12914
  Copyright terms: Public domain W3C validator