ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc Unicode version

Theorem nn0suc 4640
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem nn0suc
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3  |-  ( y  =  (/)  ->  ( y  =  (/)  <->  (/)  =  (/) ) )
2 eqeq1 2203 . . . 4  |-  ( y  =  (/)  ->  ( y  =  suc  x  <->  (/)  =  suc  x ) )
32rexbidv 2498 . . 3  |-  ( y  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  (/)  =  suc  x
) )
41, 3orbi12d 794 . 2  |-  ( y  =  (/)  ->  ( ( y  =  (/)  \/  E. x  e.  om  y  =  suc  x )  <->  ( (/)  =  (/)  \/ 
E. x  e.  om  (/)  =  suc  x ) ) )
5 eqeq1 2203 . . 3  |-  ( y  =  z  ->  (
y  =  (/)  <->  z  =  (/) ) )
6 eqeq1 2203 . . . 4  |-  ( y  =  z  ->  (
y  =  suc  x  <->  z  =  suc  x ) )
76rexbidv 2498 . . 3  |-  ( y  =  z  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  z  =  suc  x ) )
85, 7orbi12d 794 . 2  |-  ( y  =  z  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x ) ) )
9 eqeq1 2203 . . 3  |-  ( y  =  suc  z  -> 
( y  =  (/)  <->  suc  z  =  (/) ) )
10 eqeq1 2203 . . . 4  |-  ( y  =  suc  z  -> 
( y  =  suc  x 
<->  suc  z  =  suc  x ) )
1110rexbidv 2498 . . 3  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  y  =  suc  x 
<->  E. x  e.  om  suc  z  =  suc  x ) )
129, 11orbi12d 794 . 2  |-  ( y  =  suc  z  -> 
( ( y  =  (/)  \/  E. x  e. 
om  y  =  suc  x )  <->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
13 eqeq1 2203 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
14 eqeq1 2203 . . . 4  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1514rexbidv 2498 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
1613, 15orbi12d 794 . 2  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
17 eqid 2196 . . 3  |-  (/)  =  (/)
1817orci 732 . 2  |-  ( (/)  =  (/)  \/  E. x  e.  om  (/)  =  suc  x
)
19 eqid 2196 . . . . 5  |-  suc  z  =  suc  z
20 suceq 4437 . . . . . . 7  |-  ( x  =  z  ->  suc  x  =  suc  z )
2120eqeq2d 2208 . . . . . 6  |-  ( x  =  z  ->  ( suc  z  =  suc  x 
<->  suc  z  =  suc  z ) )
2221rspcev 2868 . . . . 5  |-  ( ( z  e.  om  /\  suc  z  =  suc  z )  ->  E. x  e.  om  suc  z  =  suc  x )
2319, 22mpan2 425 . . . 4  |-  ( z  e.  om  ->  E. x  e.  om  suc  z  =  suc  x )
2423olcd 735 . . 3  |-  ( z  e.  om  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) )
2524a1d 22 . 2  |-  ( z  e.  om  ->  (
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x )  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
264, 8, 12, 16, 18, 25finds 4636 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476   (/)c0 3450   suc csuc 4400   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627
This theorem is referenced by:  nnsuc  4652  nnpredcl  4659  frecabcl  6457  nnsucuniel  6553  nneneq  6918  phpm  6926  dif1enen  6941  fin0  6946  fin0or  6947  diffisn  6954
  Copyright terms: Public domain W3C validator