| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0suc | Unicode version | ||
| Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| nn0suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. . 3
| |
| 2 | eqeq1 2203 |
. . . 4
| |
| 3 | 2 | rexbidv 2498 |
. . 3
|
| 4 | 1, 3 | orbi12d 794 |
. 2
|
| 5 | eqeq1 2203 |
. . 3
| |
| 6 | eqeq1 2203 |
. . . 4
| |
| 7 | 6 | rexbidv 2498 |
. . 3
|
| 8 | 5, 7 | orbi12d 794 |
. 2
|
| 9 | eqeq1 2203 |
. . 3
| |
| 10 | eqeq1 2203 |
. . . 4
| |
| 11 | 10 | rexbidv 2498 |
. . 3
|
| 12 | 9, 11 | orbi12d 794 |
. 2
|
| 13 | eqeq1 2203 |
. . 3
| |
| 14 | eqeq1 2203 |
. . . 4
| |
| 15 | 14 | rexbidv 2498 |
. . 3
|
| 16 | 13, 15 | orbi12d 794 |
. 2
|
| 17 | eqid 2196 |
. . 3
| |
| 18 | 17 | orci 732 |
. 2
|
| 19 | eqid 2196 |
. . . . 5
| |
| 20 | suceq 4437 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2208 |
. . . . . 6
|
| 22 | 21 | rspcev 2868 |
. . . . 5
|
| 23 | 19, 22 | mpan2 425 |
. . . 4
|
| 24 | 23 | olcd 735 |
. . 3
|
| 25 | 24 | a1d 22 |
. 2
|
| 26 | 4, 8, 12, 16, 18, 25 | finds 4636 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 |
| This theorem is referenced by: nnsuc 4652 nnpredcl 4659 frecabcl 6457 nnsucuniel 6553 nneneq 6918 phpm 6926 dif1enen 6941 fin0 6946 fin0or 6947 diffisn 6954 |
| Copyright terms: Public domain | W3C validator |