| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0suc | Unicode version | ||
| Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| nn0suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. . 3
| |
| 2 | eqeq1 2214 |
. . . 4
| |
| 3 | 2 | rexbidv 2509 |
. . 3
|
| 4 | 1, 3 | orbi12d 795 |
. 2
|
| 5 | eqeq1 2214 |
. . 3
| |
| 6 | eqeq1 2214 |
. . . 4
| |
| 7 | 6 | rexbidv 2509 |
. . 3
|
| 8 | 5, 7 | orbi12d 795 |
. 2
|
| 9 | eqeq1 2214 |
. . 3
| |
| 10 | eqeq1 2214 |
. . . 4
| |
| 11 | 10 | rexbidv 2509 |
. . 3
|
| 12 | 9, 11 | orbi12d 795 |
. 2
|
| 13 | eqeq1 2214 |
. . 3
| |
| 14 | eqeq1 2214 |
. . . 4
| |
| 15 | 14 | rexbidv 2509 |
. . 3
|
| 16 | 13, 15 | orbi12d 795 |
. 2
|
| 17 | eqid 2207 |
. . 3
| |
| 18 | 17 | orci 733 |
. 2
|
| 19 | eqid 2207 |
. . . . 5
| |
| 20 | suceq 4467 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2219 |
. . . . . 6
|
| 22 | 21 | rspcev 2884 |
. . . . 5
|
| 23 | 19, 22 | mpan2 425 |
. . . 4
|
| 24 | 23 | olcd 736 |
. . 3
|
| 25 | 24 | a1d 22 |
. 2
|
| 26 | 4, 8, 12, 16, 18, 25 | finds 4666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nnsuc 4682 nnpredcl 4689 frecabcl 6508 nnsucuniel 6604 nneneq 6979 phpm 6988 dif1enen 7003 fin0 7008 fin0or 7009 diffisn 7016 |
| Copyright terms: Public domain | W3C validator |