ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc Unicode version

Theorem nn0suc 4651
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem nn0suc
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2211 . . 3  |-  ( y  =  (/)  ->  ( y  =  (/)  <->  (/)  =  (/) ) )
2 eqeq1 2211 . . . 4  |-  ( y  =  (/)  ->  ( y  =  suc  x  <->  (/)  =  suc  x ) )
32rexbidv 2506 . . 3  |-  ( y  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  (/)  =  suc  x
) )
41, 3orbi12d 794 . 2  |-  ( y  =  (/)  ->  ( ( y  =  (/)  \/  E. x  e.  om  y  =  suc  x )  <->  ( (/)  =  (/)  \/ 
E. x  e.  om  (/)  =  suc  x ) ) )
5 eqeq1 2211 . . 3  |-  ( y  =  z  ->  (
y  =  (/)  <->  z  =  (/) ) )
6 eqeq1 2211 . . . 4  |-  ( y  =  z  ->  (
y  =  suc  x  <->  z  =  suc  x ) )
76rexbidv 2506 . . 3  |-  ( y  =  z  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  z  =  suc  x ) )
85, 7orbi12d 794 . 2  |-  ( y  =  z  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x ) ) )
9 eqeq1 2211 . . 3  |-  ( y  =  suc  z  -> 
( y  =  (/)  <->  suc  z  =  (/) ) )
10 eqeq1 2211 . . . 4  |-  ( y  =  suc  z  -> 
( y  =  suc  x 
<->  suc  z  =  suc  x ) )
1110rexbidv 2506 . . 3  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  y  =  suc  x 
<->  E. x  e.  om  suc  z  =  suc  x ) )
129, 11orbi12d 794 . 2  |-  ( y  =  suc  z  -> 
( ( y  =  (/)  \/  E. x  e. 
om  y  =  suc  x )  <->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
13 eqeq1 2211 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
14 eqeq1 2211 . . . 4  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1514rexbidv 2506 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
1613, 15orbi12d 794 . 2  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
17 eqid 2204 . . 3  |-  (/)  =  (/)
1817orci 732 . 2  |-  ( (/)  =  (/)  \/  E. x  e.  om  (/)  =  suc  x
)
19 eqid 2204 . . . . 5  |-  suc  z  =  suc  z
20 suceq 4448 . . . . . . 7  |-  ( x  =  z  ->  suc  x  =  suc  z )
2120eqeq2d 2216 . . . . . 6  |-  ( x  =  z  ->  ( suc  z  =  suc  x 
<->  suc  z  =  suc  z ) )
2221rspcev 2876 . . . . 5  |-  ( ( z  e.  om  /\  suc  z  =  suc  z )  ->  E. x  e.  om  suc  z  =  suc  x )
2319, 22mpan2 425 . . . 4  |-  ( z  e.  om  ->  E. x  e.  om  suc  z  =  suc  x )
2423olcd 735 . . 3  |-  ( z  e.  om  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) )
2524a1d 22 . 2  |-  ( z  e.  om  ->  (
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x )  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
264, 8, 12, 16, 18, 25finds 4647 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1372    e. wcel 2175   E.wrex 2484   (/)c0 3459   suc csuc 4411   omcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-iom 4638
This theorem is referenced by:  nnsuc  4663  nnpredcl  4670  frecabcl  6484  nnsucuniel  6580  nneneq  6953  phpm  6961  dif1enen  6976  fin0  6981  fin0or  6982  diffisn  6989
  Copyright terms: Public domain W3C validator