| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0suc | Unicode version | ||
| Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| nn0suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2211 |
. . 3
| |
| 2 | eqeq1 2211 |
. . . 4
| |
| 3 | 2 | rexbidv 2506 |
. . 3
|
| 4 | 1, 3 | orbi12d 794 |
. 2
|
| 5 | eqeq1 2211 |
. . 3
| |
| 6 | eqeq1 2211 |
. . . 4
| |
| 7 | 6 | rexbidv 2506 |
. . 3
|
| 8 | 5, 7 | orbi12d 794 |
. 2
|
| 9 | eqeq1 2211 |
. . 3
| |
| 10 | eqeq1 2211 |
. . . 4
| |
| 11 | 10 | rexbidv 2506 |
. . 3
|
| 12 | 9, 11 | orbi12d 794 |
. 2
|
| 13 | eqeq1 2211 |
. . 3
| |
| 14 | eqeq1 2211 |
. . . 4
| |
| 15 | 14 | rexbidv 2506 |
. . 3
|
| 16 | 13, 15 | orbi12d 794 |
. 2
|
| 17 | eqid 2204 |
. . 3
| |
| 18 | 17 | orci 732 |
. 2
|
| 19 | eqid 2204 |
. . . . 5
| |
| 20 | suceq 4448 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2216 |
. . . . . 6
|
| 22 | 21 | rspcev 2876 |
. . . . 5
|
| 23 | 19, 22 | mpan2 425 |
. . . 4
|
| 24 | 23 | olcd 735 |
. . 3
|
| 25 | 24 | a1d 22 |
. 2
|
| 26 | 4, 8, 12, 16, 18, 25 | finds 4647 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4417 df-iom 4638 |
| This theorem is referenced by: nnsuc 4663 nnpredcl 4670 frecabcl 6484 nnsucuniel 6580 nneneq 6953 phpm 6961 dif1enen 6976 fin0 6981 fin0or 6982 diffisn 6989 |
| Copyright terms: Public domain | W3C validator |