ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc Unicode version

Theorem nn0suc 4394
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem nn0suc
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2091 . . 3  |-  ( y  =  (/)  ->  ( y  =  (/)  <->  (/)  =  (/) ) )
2 eqeq1 2091 . . . 4  |-  ( y  =  (/)  ->  ( y  =  suc  x  <->  (/)  =  suc  x ) )
32rexbidv 2377 . . 3  |-  ( y  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  (/)  =  suc  x
) )
41, 3orbi12d 740 . 2  |-  ( y  =  (/)  ->  ( ( y  =  (/)  \/  E. x  e.  om  y  =  suc  x )  <->  ( (/)  =  (/)  \/ 
E. x  e.  om  (/)  =  suc  x ) ) )
5 eqeq1 2091 . . 3  |-  ( y  =  z  ->  (
y  =  (/)  <->  z  =  (/) ) )
6 eqeq1 2091 . . . 4  |-  ( y  =  z  ->  (
y  =  suc  x  <->  z  =  suc  x ) )
76rexbidv 2377 . . 3  |-  ( y  =  z  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  z  =  suc  x ) )
85, 7orbi12d 740 . 2  |-  ( y  =  z  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x ) ) )
9 eqeq1 2091 . . 3  |-  ( y  =  suc  z  -> 
( y  =  (/)  <->  suc  z  =  (/) ) )
10 eqeq1 2091 . . . 4  |-  ( y  =  suc  z  -> 
( y  =  suc  x 
<->  suc  z  =  suc  x ) )
1110rexbidv 2377 . . 3  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  y  =  suc  x 
<->  E. x  e.  om  suc  z  =  suc  x ) )
129, 11orbi12d 740 . 2  |-  ( y  =  suc  z  -> 
( ( y  =  (/)  \/  E. x  e. 
om  y  =  suc  x )  <->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
13 eqeq1 2091 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
14 eqeq1 2091 . . . 4  |-  ( y  =  A  ->  (
y  =  suc  x  <->  A  =  suc  x ) )
1514rexbidv 2377 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  suc  x  <->  E. x  e.  om  A  =  suc  x ) )
1613, 15orbi12d 740 . 2  |-  ( y  =  A  ->  (
( y  =  (/)  \/ 
E. x  e.  om  y  =  suc  x )  <-> 
( A  =  (/)  \/ 
E. x  e.  om  A  =  suc  x ) ) )
17 eqid 2085 . . 3  |-  (/)  =  (/)
1817orci 683 . 2  |-  ( (/)  =  (/)  \/  E. x  e.  om  (/)  =  suc  x
)
19 eqid 2085 . . . . 5  |-  suc  z  =  suc  z
20 suceq 4205 . . . . . . 7  |-  ( x  =  z  ->  suc  x  =  suc  z )
2120eqeq2d 2096 . . . . . 6  |-  ( x  =  z  ->  ( suc  z  =  suc  x 
<->  suc  z  =  suc  z ) )
2221rspcev 2715 . . . . 5  |-  ( ( z  e.  om  /\  suc  z  =  suc  z )  ->  E. x  e.  om  suc  z  =  suc  x )
2319, 22mpan2 416 . . . 4  |-  ( z  e.  om  ->  E. x  e.  om  suc  z  =  suc  x )
2423olcd 686 . . 3  |-  ( z  e.  om  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) )
2524a1d 22 . 2  |-  ( z  e.  om  ->  (
( z  =  (/)  \/ 
E. x  e.  om  z  =  suc  x )  ->  ( suc  z  =  (/)  \/  E. x  e.  om  suc  z  =  suc  x ) ) )
264, 8, 12, 16, 18, 25finds 4390 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 662    = wceq 1287    e. wcel 1436   E.wrex 2356   (/)c0 3275   suc csuc 4168   omcom 4380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-uni 3639  df-int 3674  df-suc 4174  df-iom 4381
This theorem is referenced by:  nnsuc  4405  frecabcl  6120  nnsucuniel  6212  nneneq  6527  phpm  6535  dif1enen  6550  fin0  6555  fin0or  6556  diffisn  6563  nnpredcl  11378
  Copyright terms: Public domain W3C validator