| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0suc | Unicode version | ||
| Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| nn0suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 |
. . 3
| |
| 2 | eqeq1 2212 |
. . . 4
| |
| 3 | 2 | rexbidv 2507 |
. . 3
|
| 4 | 1, 3 | orbi12d 795 |
. 2
|
| 5 | eqeq1 2212 |
. . 3
| |
| 6 | eqeq1 2212 |
. . . 4
| |
| 7 | 6 | rexbidv 2507 |
. . 3
|
| 8 | 5, 7 | orbi12d 795 |
. 2
|
| 9 | eqeq1 2212 |
. . 3
| |
| 10 | eqeq1 2212 |
. . . 4
| |
| 11 | 10 | rexbidv 2507 |
. . 3
|
| 12 | 9, 11 | orbi12d 795 |
. 2
|
| 13 | eqeq1 2212 |
. . 3
| |
| 14 | eqeq1 2212 |
. . . 4
| |
| 15 | 14 | rexbidv 2507 |
. . 3
|
| 16 | 13, 15 | orbi12d 795 |
. 2
|
| 17 | eqid 2205 |
. . 3
| |
| 18 | 17 | orci 733 |
. 2
|
| 19 | eqid 2205 |
. . . . 5
| |
| 20 | suceq 4449 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2217 |
. . . . . 6
|
| 22 | 21 | rspcev 2877 |
. . . . 5
|
| 23 | 19, 22 | mpan2 425 |
. . . 4
|
| 24 | 23 | olcd 736 |
. . 3
|
| 25 | 24 | a1d 22 |
. 2
|
| 26 | 4, 8, 12, 16, 18, 25 | finds 4648 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: nnsuc 4664 nnpredcl 4671 frecabcl 6485 nnsucuniel 6581 nneneq 6954 phpm 6962 dif1enen 6977 fin0 6982 fin0or 6983 diffisn 6990 |
| Copyright terms: Public domain | W3C validator |