Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0suc | Unicode version |
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
nn0suc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . 3 | |
2 | eqeq1 2172 | . . . 4 | |
3 | 2 | rexbidv 2467 | . . 3 |
4 | 1, 3 | orbi12d 783 | . 2 |
5 | eqeq1 2172 | . . 3 | |
6 | eqeq1 2172 | . . . 4 | |
7 | 6 | rexbidv 2467 | . . 3 |
8 | 5, 7 | orbi12d 783 | . 2 |
9 | eqeq1 2172 | . . 3 | |
10 | eqeq1 2172 | . . . 4 | |
11 | 10 | rexbidv 2467 | . . 3 |
12 | 9, 11 | orbi12d 783 | . 2 |
13 | eqeq1 2172 | . . 3 | |
14 | eqeq1 2172 | . . . 4 | |
15 | 14 | rexbidv 2467 | . . 3 |
16 | 13, 15 | orbi12d 783 | . 2 |
17 | eqid 2165 | . . 3 | |
18 | 17 | orci 721 | . 2 |
19 | eqid 2165 | . . . . 5 | |
20 | suceq 4380 | . . . . . . 7 | |
21 | 20 | eqeq2d 2177 | . . . . . 6 |
22 | 21 | rspcev 2830 | . . . . 5 |
23 | 19, 22 | mpan2 422 | . . . 4 |
24 | 23 | olcd 724 | . . 3 |
25 | 24 | a1d 22 | . 2 |
26 | 4, 8, 12, 16, 18, 25 | finds 4577 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 wrex 2445 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnsuc 4593 nnpredcl 4600 frecabcl 6367 nnsucuniel 6463 nneneq 6823 phpm 6831 dif1enen 6846 fin0 6851 fin0or 6852 diffisn 6859 |
Copyright terms: Public domain | W3C validator |