ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfnom Unicode version

Theorem frecfnom 6228
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.)
Assertion
Ref Expression
frecfnom  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> frec ( F ,  A )  Fn 
om )
Distinct variable groups:    z, A    z, F
Allowed substitution hint:    V( z)

Proof of Theorem frecfnom
Dummy variables  g  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2100 . . . 4  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
2 eqid 2100 . . . . 5  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
32frectfr 6227 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  ( g  e.  _V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  /\  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  y )  e.  _V ) )
41, 3tfri1d 6162 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  Fn  On )
5 fnresin1 5173 . . 3  |-  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  Fn  On  ->  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  Fn  ( On  i^i  om ) )
64, 5syl 14 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  Fn  ( On  i^i  om ) )
7 omsson 4464 . . . . . 6  |-  om  C_  On
8 sseqin2 3242 . . . . . 6  |-  ( om  C_  On  <->  ( On  i^i  om )  =  om )
97, 8mpbi 144 . . . . 5  |-  ( On 
i^i  om )  =  om
109reseq2i 4752 . . . 4  |-  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
11 df-frec 6218 . . . 4  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
1210, 11eqtr4i 2123 . . 3  |-  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  = frec ( F ,  A )
13 fneq12 5152 . . 3  |-  ( ( (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  = frec ( F ,  A )  /\  ( On  i^i  om )  =  om )  ->  (
(recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  Fn  ( On  i^i  om )  <-> frec ( F ,  A
)  Fn  om )
)
1412, 9, 13mp2an 420 . 2  |-  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  ( On  i^i  om ) )  Fn  ( On  i^i  om )  <-> frec ( F ,  A
)  Fn  om )
156, 14sylib 121 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> frec ( F ,  A )  Fn 
om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670   A.wal 1297    = wceq 1299    e. wcel 1448   {cab 2086   E.wrex 2376   _Vcvv 2641    i^i cin 3020    C_ wss 3021   (/)c0 3310    |-> cmpt 3929   Oncon0 4223   suc csuc 4225   omcom 4442   dom cdm 4477    |` cres 4479    Fn wfn 5054   ` cfv 5059  recscrecs 6131  freccfrec 6217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-recs 6132  df-frec 6218
This theorem is referenced by:  frecrdg  6235  frec2uzrand  10019  frec2uzf1od  10020  frecfzennn  10040  hashinfom  10365
  Copyright terms: Public domain W3C validator