ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc Unicode version

Theorem frecsuc 6460
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
Assertion
Ref Expression
frecsuc  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Distinct variable groups:    z, F    z, S
Allowed substitution hints:    A( z)    B( z)

Proof of Theorem frecsuc
Dummy variables  f  g  m  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 4862 . . . . . . . . 9  |-  ( f  =  g  ->  dom  f  =  dom  g )
21eqeq1d 2202 . . . . . . . 8  |-  ( f  =  g  ->  ( dom  f  =  suc  n 
<->  dom  g  =  suc  n ) )
3 fveq1 5553 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f `  n )  =  ( g `  n ) )
43fveq2d 5558 . . . . . . . . 9  |-  ( f  =  g  ->  ( F `  ( f `  n ) )  =  ( F `  (
g `  n )
) )
54eleq2d 2263 . . . . . . . 8  |-  ( f  =  g  ->  (
y  e.  ( F `
 ( f `  n ) )  <->  y  e.  ( F `  ( g `
 n ) ) ) )
62, 5anbi12d 473 . . . . . . 7  |-  ( f  =  g  ->  (
( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  <->  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `  n
) ) ) ) )
76rexbidv 2495 . . . . . 6  |-  ( f  =  g  ->  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  ( f `
 n ) ) )  <->  E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) ) ) )
81eqeq1d 2202 . . . . . . 7  |-  ( f  =  g  ->  ( dom  f  =  (/)  <->  dom  g  =  (/) ) )
98anbi1d 465 . . . . . 6  |-  ( f  =  g  ->  (
( dom  f  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  y  e.  A ) ) )
107, 9orbi12d 794 . . . . 5  |-  ( f  =  g  ->  (
( E. n  e. 
om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) )  <->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) ) )
1110abbidv 2311 . . . 4  |-  ( f  =  g  ->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) }  =  { y  |  ( E. n  e. 
om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1211cbvmptv 4125 . . 3  |-  ( f  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
13 eleq1 2256 . . . . . . . 8  |-  ( y  =  x  ->  (
y  e.  ( F `
 ( g `  n ) )  <->  x  e.  ( F `  ( g `
 n ) ) ) )
1413anbi2d 464 . . . . . . 7  |-  ( y  =  x  ->  (
( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  <->  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `  n
) ) ) ) )
1514rexbidv 2495 . . . . . 6  |-  ( y  =  x  ->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) )  <->  E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) ) ) )
16 eleq1 2256 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
1716anbi2d 464 . . . . . 6  |-  ( y  =  x  ->  (
( dom  g  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  x  e.  A ) ) )
1815, 17orbi12d 794 . . . . 5  |-  ( y  =  x  ->  (
( E. n  e. 
om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )  <->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) ) )
1918cbvabv 2318 . . . 4  |-  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }  =  { x  |  ( E. n  e. 
om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }
2019mpteq2i 4116 . . 3  |-  ( g  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
21 suceq 4433 . . . . . . . . 9  |-  ( n  =  m  ->  suc  n  =  suc  m )
2221eqeq2d 2205 . . . . . . . 8  |-  ( n  =  m  ->  ( dom  g  =  suc  n 
<->  dom  g  =  suc  m ) )
23 fveq2 5554 . . . . . . . . . 10  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
2423fveq2d 5558 . . . . . . . . 9  |-  ( n  =  m  ->  ( F `  ( g `  n ) )  =  ( F `  (
g `  m )
) )
2524eleq2d 2263 . . . . . . . 8  |-  ( n  =  m  ->  (
x  e.  ( F `
 ( g `  n ) )  <->  x  e.  ( F `  ( g `
 m ) ) ) )
2622, 25anbi12d 473 . . . . . . 7  |-  ( n  =  m  ->  (
( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  <->  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m
) ) ) ) )
2726cbvrexv 2727 . . . . . 6  |-  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) ) )
2827orbi1i 764 . . . . 5  |-  ( ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) )
2928abbii 2309 . . . 4  |-  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }
3029mpteq2i 4116 . . 3  |-  ( g  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3112, 20, 303eqtri 2218 . 2  |-  ( f  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3231frecsuclem 6459 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760   (/)c0 3446    |-> cmpt 4090   suc csuc 4396   omcom 4622   dom cdm 4659   ` cfv 5254  freccfrec 6443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358  df-frec 6444
This theorem is referenced by:  frecrdg  6461  frec2uzsucd  10472  frec2uzrdg  10480  frecuzrdgsuc  10485  frecuzrdgg  10487  frecuzrdgsuctlem  10494  seq3val  10531  seqvalcd  10532
  Copyright terms: Public domain W3C validator