Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecsuc | Unicode version |
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.) |
Ref | Expression |
---|---|
frecsuc | frec frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 4809 | . . . . . . . . 9 | |
2 | 1 | eqeq1d 2179 | . . . . . . . 8 |
3 | fveq1 5493 | . . . . . . . . . 10 | |
4 | 3 | fveq2d 5498 | . . . . . . . . 9 |
5 | 4 | eleq2d 2240 | . . . . . . . 8 |
6 | 2, 5 | anbi12d 470 | . . . . . . 7 |
7 | 6 | rexbidv 2471 | . . . . . 6 |
8 | 1 | eqeq1d 2179 | . . . . . . 7 |
9 | 8 | anbi1d 462 | . . . . . 6 |
10 | 7, 9 | orbi12d 788 | . . . . 5 |
11 | 10 | abbidv 2288 | . . . 4 |
12 | 11 | cbvmptv 4083 | . . 3 |
13 | eleq1 2233 | . . . . . . . 8 | |
14 | 13 | anbi2d 461 | . . . . . . 7 |
15 | 14 | rexbidv 2471 | . . . . . 6 |
16 | eleq1 2233 | . . . . . . 7 | |
17 | 16 | anbi2d 461 | . . . . . 6 |
18 | 15, 17 | orbi12d 788 | . . . . 5 |
19 | 18 | cbvabv 2295 | . . . 4 |
20 | 19 | mpteq2i 4074 | . . 3 |
21 | suceq 4385 | . . . . . . . . 9 | |
22 | 21 | eqeq2d 2182 | . . . . . . . 8 |
23 | fveq2 5494 | . . . . . . . . . 10 | |
24 | 23 | fveq2d 5498 | . . . . . . . . 9 |
25 | 24 | eleq2d 2240 | . . . . . . . 8 |
26 | 22, 25 | anbi12d 470 | . . . . . . 7 |
27 | 26 | cbvrexv 2697 | . . . . . 6 |
28 | 27 | orbi1i 758 | . . . . 5 |
29 | 28 | abbii 2286 | . . . 4 |
30 | 29 | mpteq2i 4074 | . . 3 |
31 | 12, 20, 30 | 3eqtri 2195 | . 2 |
32 | 31 | frecsuclem 6382 | 1 frec frec |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 c0 3414 cmpt 4048 csuc 4348 com 4572 cdm 4609 cfv 5196 freccfrec 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-recs 6281 df-frec 6367 |
This theorem is referenced by: frecrdg 6384 frec2uzsucd 10344 frec2uzrdg 10352 frecuzrdgsuc 10357 frecuzrdgg 10359 frecuzrdgsuctlem 10366 seq3val 10401 seqvalcd 10402 |
Copyright terms: Public domain | W3C validator |