ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc Unicode version

Theorem frecsuc 6375
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
Assertion
Ref Expression
frecsuc  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Distinct variable groups:    z, F    z, S
Allowed substitution hints:    A( z)    B( z)

Proof of Theorem frecsuc
Dummy variables  f  g  m  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 4804 . . . . . . . . 9  |-  ( f  =  g  ->  dom  f  =  dom  g )
21eqeq1d 2174 . . . . . . . 8  |-  ( f  =  g  ->  ( dom  f  =  suc  n 
<->  dom  g  =  suc  n ) )
3 fveq1 5485 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f `  n )  =  ( g `  n ) )
43fveq2d 5490 . . . . . . . . 9  |-  ( f  =  g  ->  ( F `  ( f `  n ) )  =  ( F `  (
g `  n )
) )
54eleq2d 2236 . . . . . . . 8  |-  ( f  =  g  ->  (
y  e.  ( F `
 ( f `  n ) )  <->  y  e.  ( F `  ( g `
 n ) ) ) )
62, 5anbi12d 465 . . . . . . 7  |-  ( f  =  g  ->  (
( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  <->  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `  n
) ) ) ) )
76rexbidv 2467 . . . . . 6  |-  ( f  =  g  ->  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  ( f `
 n ) ) )  <->  E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) ) ) )
81eqeq1d 2174 . . . . . . 7  |-  ( f  =  g  ->  ( dom  f  =  (/)  <->  dom  g  =  (/) ) )
98anbi1d 461 . . . . . 6  |-  ( f  =  g  ->  (
( dom  f  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  y  e.  A ) ) )
107, 9orbi12d 783 . . . . 5  |-  ( f  =  g  ->  (
( E. n  e. 
om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) )  <->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) ) )
1110abbidv 2284 . . . 4  |-  ( f  =  g  ->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) }  =  { y  |  ( E. n  e. 
om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1211cbvmptv 4078 . . 3  |-  ( f  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
13 eleq1 2229 . . . . . . . 8  |-  ( y  =  x  ->  (
y  e.  ( F `
 ( g `  n ) )  <->  x  e.  ( F `  ( g `
 n ) ) ) )
1413anbi2d 460 . . . . . . 7  |-  ( y  =  x  ->  (
( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  <->  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `  n
) ) ) ) )
1514rexbidv 2467 . . . . . 6  |-  ( y  =  x  ->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) )  <->  E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) ) ) )
16 eleq1 2229 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
1716anbi2d 460 . . . . . 6  |-  ( y  =  x  ->  (
( dom  g  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  x  e.  A ) ) )
1815, 17orbi12d 783 . . . . 5  |-  ( y  =  x  ->  (
( E. n  e. 
om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )  <->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) ) )
1918cbvabv 2291 . . . 4  |-  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }  =  { x  |  ( E. n  e. 
om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }
2019mpteq2i 4069 . . 3  |-  ( g  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
21 suceq 4380 . . . . . . . . 9  |-  ( n  =  m  ->  suc  n  =  suc  m )
2221eqeq2d 2177 . . . . . . . 8  |-  ( n  =  m  ->  ( dom  g  =  suc  n 
<->  dom  g  =  suc  m ) )
23 fveq2 5486 . . . . . . . . . 10  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
2423fveq2d 5490 . . . . . . . . 9  |-  ( n  =  m  ->  ( F `  ( g `  n ) )  =  ( F `  (
g `  m )
) )
2524eleq2d 2236 . . . . . . . 8  |-  ( n  =  m  ->  (
x  e.  ( F `
 ( g `  n ) )  <->  x  e.  ( F `  ( g `
 m ) ) ) )
2622, 25anbi12d 465 . . . . . . 7  |-  ( n  =  m  ->  (
( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  <->  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m
) ) ) ) )
2726cbvrexv 2693 . . . . . 6  |-  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) ) )
2827orbi1i 753 . . . . 5  |-  ( ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) )
2928abbii 2282 . . . 4  |-  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }
3029mpteq2i 4069 . . 3  |-  ( g  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3112, 20, 303eqtri 2190 . 2  |-  ( f  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3231frecsuclem 6374 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726   (/)c0 3409    |-> cmpt 4043   suc csuc 4343   omcom 4567   dom cdm 4604   ` cfv 5188  freccfrec 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273  df-frec 6359
This theorem is referenced by:  frecrdg  6376  frec2uzsucd  10336  frec2uzrdg  10344  frecuzrdgsuc  10349  frecuzrdgg  10351  frecuzrdgsuctlem  10358  seq3val  10393  seqvalcd  10394
  Copyright terms: Public domain W3C validator