ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq2 Unicode version

Theorem freceq2 6539
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq2  |-  ( A  =  B  -> frec ( F ,  A )  = frec ( F ,  B
) )

Proof of Theorem freceq2
Dummy variables  x  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . . 9  |-  ( ( A  =  B  /\  g  e.  _V )  ->  A  =  B )
21eleq2d 2299 . . . . . . . 8  |-  ( ( A  =  B  /\  g  e.  _V )  ->  ( x  e.  A  <->  x  e.  B ) )
32anbi2d 464 . . . . . . 7  |-  ( ( A  =  B  /\  g  e.  _V )  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <->  ( dom  g  =  (/)  /\  x  e.  B ) ) )
43orbi2d 795 . . . . . 6  |-  ( ( A  =  B  /\  g  e.  _V )  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) ) )
54abbidv 2347 . . . . 5  |-  ( ( A  =  B  /\  g  e.  _V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } )
65mpteq2dva 4174 . . . 4  |-  ( A  =  B  ->  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } ) )
7 recseq 6452 . . . 4  |-  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } )  -> recs ( (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } ) ) )
86, 7syl 14 . . 3  |-  ( A  =  B  -> recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } ) ) )
98reseq1d 5004 . 2  |-  ( A  =  B  ->  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } ) )  |`  om )
)
10 df-frec 6537 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
11 df-frec 6537 . 2  |- frec ( F ,  B )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  B ) ) } ) )  |`  om )
129, 10, 113eqtr4g 2287 1  |-  ( A  =  B  -> frec ( F ,  A )  = frec ( F ,  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799   (/)c0 3491    |-> cmpt 4145   suc csuc 4456   omcom 4682   dom cdm 4719    |` cres 4721   ` cfv 5318  recscrecs 6450  freccfrec 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-res 4731  df-iota 5278  df-fv 5326  df-recs 6451  df-frec 6537
This theorem is referenced by:  seqeq1  10672  seqeq3  10674
  Copyright terms: Public domain W3C validator