| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffrec | Unicode version | ||
| Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| nffrec.1 |
|
| nffrec.2 |
|
| Ref | Expression |
|---|---|
| nffrec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frec 6479 |
. 2
| |
| 2 | nfcv 2348 |
. . . . 5
| |
| 3 | nfcv 2348 |
. . . . . . . 8
| |
| 4 | nfv 1551 |
. . . . . . . . 9
| |
| 5 | nffrec.1 |
. . . . . . . . . . 11
| |
| 6 | nfcv 2348 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | nffv 5588 |
. . . . . . . . . 10
|
| 8 | 7 | nfcri 2342 |
. . . . . . . . 9
|
| 9 | 4, 8 | nfan 1588 |
. . . . . . . 8
|
| 10 | 3, 9 | nfrexya 2547 |
. . . . . . 7
|
| 11 | nfv 1551 |
. . . . . . . 8
| |
| 12 | nffrec.2 |
. . . . . . . . 9
| |
| 13 | 12 | nfcri 2342 |
. . . . . . . 8
|
| 14 | 11, 13 | nfan 1588 |
. . . . . . 7
|
| 15 | 10, 14 | nfor 1597 |
. . . . . 6
|
| 16 | 15 | nfab 2353 |
. . . . 5
|
| 17 | 2, 16 | nfmpt 4137 |
. . . 4
|
| 18 | 17 | nfrecs 6395 |
. . 3
|
| 19 | 18, 3 | nfres 4962 |
. 2
|
| 20 | 1, 19 | nfcxfr 2345 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-xp 4682 df-res 4688 df-iota 5233 df-fv 5280 df-recs 6393 df-frec 6479 |
| This theorem is referenced by: nfseq 10604 |
| Copyright terms: Public domain | W3C validator |