ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec Unicode version

Theorem nffrec 6223
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1  |-  F/_ x F
nffrec.2  |-  F/_ x A
Assertion
Ref Expression
nffrec  |-  F/_ xfrec ( F ,  A )

Proof of Theorem nffrec
Dummy variables  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6218 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
2 nfcv 2240 . . . . 5  |-  F/_ x _V
3 nfcv 2240 . . . . . . . 8  |-  F/_ x om
4 nfv 1476 . . . . . . . . 9  |-  F/ x dom  g  =  suc  m
5 nffrec.1 . . . . . . . . . . 11  |-  F/_ x F
6 nfcv 2240 . . . . . . . . . . 11  |-  F/_ x
( g `  m
)
75, 6nffv 5363 . . . . . . . . . 10  |-  F/_ x
( F `  (
g `  m )
)
87nfcri 2234 . . . . . . . . 9  |-  F/ x  y  e.  ( F `  ( g `  m
) )
94, 8nfan 1512 . . . . . . . 8  |-  F/ x
( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )
103, 9nfrexya 2433 . . . . . . 7  |-  F/ x E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )
11 nfv 1476 . . . . . . . 8  |-  F/ x dom  g  =  (/)
12 nffrec.2 . . . . . . . . 9  |-  F/_ x A
1312nfcri 2234 . . . . . . . 8  |-  F/ x  y  e.  A
1411, 13nfan 1512 . . . . . . 7  |-  F/ x
( dom  g  =  (/) 
/\  y  e.  A
)
1510, 14nfor 1521 . . . . . 6  |-  F/ x
( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )
1615nfab 2245 . . . . 5  |-  F/_ x { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }
172, 16nfmpt 3960 . . . 4  |-  F/_ x
( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1817nfrecs 6134 . . 3  |-  F/_ xrecs ( ( g  e. 
_V  |->  { y  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )
1918, 3nfres 4757 . 2  |-  F/_ x
(recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
201, 19nfcxfr 2237 1  |-  F/_ xfrec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 670    = wceq 1299    e. wcel 1448   {cab 2086   F/_wnfc 2227   E.wrex 2376   _Vcvv 2641   (/)c0 3310    |-> cmpt 3929   suc csuc 4225   omcom 4442   dom cdm 4477    |` cres 4479   ` cfv 5059  recscrecs 6131  freccfrec 6217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-xp 4483  df-res 4489  df-iota 5024  df-fv 5067  df-recs 6132  df-frec 6218
This theorem is referenced by:  nfseq  10069
  Copyright terms: Public domain W3C validator