Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffrec | Unicode version |
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
nffrec.1 | |
nffrec.2 |
Ref | Expression |
---|---|
nffrec | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frec 6359 | . 2 frec recs | |
2 | nfcv 2308 | . . . . 5 | |
3 | nfcv 2308 | . . . . . . . 8 | |
4 | nfv 1516 | . . . . . . . . 9 | |
5 | nffrec.1 | . . . . . . . . . . 11 | |
6 | nfcv 2308 | . . . . . . . . . . 11 | |
7 | 5, 6 | nffv 5496 | . . . . . . . . . 10 |
8 | 7 | nfcri 2302 | . . . . . . . . 9 |
9 | 4, 8 | nfan 1553 | . . . . . . . 8 |
10 | 3, 9 | nfrexya 2507 | . . . . . . 7 |
11 | nfv 1516 | . . . . . . . 8 | |
12 | nffrec.2 | . . . . . . . . 9 | |
13 | 12 | nfcri 2302 | . . . . . . . 8 |
14 | 11, 13 | nfan 1553 | . . . . . . 7 |
15 | 10, 14 | nfor 1562 | . . . . . 6 |
16 | 15 | nfab 2313 | . . . . 5 |
17 | 2, 16 | nfmpt 4074 | . . . 4 |
18 | 17 | nfrecs 6275 | . . 3 recs |
19 | 18, 3 | nfres 4886 | . 2 recs |
20 | 1, 19 | nfcxfr 2305 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wcel 2136 cab 2151 wnfc 2295 wrex 2445 cvv 2726 c0 3409 cmpt 4043 csuc 4343 com 4567 cdm 4604 cres 4606 cfv 5188 recscrecs 6272 freccfrec 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-xp 4610 df-res 4616 df-iota 5153 df-fv 5196 df-recs 6273 df-frec 6359 |
This theorem is referenced by: nfseq 10390 |
Copyright terms: Public domain | W3C validator |