ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec Unicode version

Theorem nffrec 6387
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1  |-  F/_ x F
nffrec.2  |-  F/_ x A
Assertion
Ref Expression
nffrec  |-  F/_ xfrec ( F ,  A )

Proof of Theorem nffrec
Dummy variables  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6382 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
2 nfcv 2317 . . . . 5  |-  F/_ x _V
3 nfcv 2317 . . . . . . . 8  |-  F/_ x om
4 nfv 1526 . . . . . . . . 9  |-  F/ x dom  g  =  suc  m
5 nffrec.1 . . . . . . . . . . 11  |-  F/_ x F
6 nfcv 2317 . . . . . . . . . . 11  |-  F/_ x
( g `  m
)
75, 6nffv 5517 . . . . . . . . . 10  |-  F/_ x
( F `  (
g `  m )
)
87nfcri 2311 . . . . . . . . 9  |-  F/ x  y  e.  ( F `  ( g `  m
) )
94, 8nfan 1563 . . . . . . . 8  |-  F/ x
( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )
103, 9nfrexya 2516 . . . . . . 7  |-  F/ x E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )
11 nfv 1526 . . . . . . . 8  |-  F/ x dom  g  =  (/)
12 nffrec.2 . . . . . . . . 9  |-  F/_ x A
1312nfcri 2311 . . . . . . . 8  |-  F/ x  y  e.  A
1411, 13nfan 1563 . . . . . . 7  |-  F/ x
( dom  g  =  (/) 
/\  y  e.  A
)
1510, 14nfor 1572 . . . . . 6  |-  F/ x
( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )
1615nfab 2322 . . . . 5  |-  F/_ x { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }
172, 16nfmpt 4090 . . . 4  |-  F/_ x
( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1817nfrecs 6298 . . 3  |-  F/_ xrecs ( ( g  e. 
_V  |->  { y  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )
1918, 3nfres 4902 . 2  |-  F/_ x
(recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
201, 19nfcxfr 2314 1  |-  F/_ xfrec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2146   {cab 2161   F/_wnfc 2304   E.wrex 2454   _Vcvv 2735   (/)c0 3420    |-> cmpt 4059   suc csuc 4359   omcom 4583   dom cdm 4620    |` cres 4622   ` cfv 5208  recscrecs 6295  freccfrec 6381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-xp 4626  df-res 4632  df-iota 5170  df-fv 5216  df-recs 6296  df-frec 6382
This theorem is referenced by:  nfseq  10423
  Copyright terms: Public domain W3C validator