ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec Unicode version

Theorem nffrec 6454
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1  |-  F/_ x F
nffrec.2  |-  F/_ x A
Assertion
Ref Expression
nffrec  |-  F/_ xfrec ( F ,  A )

Proof of Theorem nffrec
Dummy variables  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6449 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
2 nfcv 2339 . . . . 5  |-  F/_ x _V
3 nfcv 2339 . . . . . . . 8  |-  F/_ x om
4 nfv 1542 . . . . . . . . 9  |-  F/ x dom  g  =  suc  m
5 nffrec.1 . . . . . . . . . . 11  |-  F/_ x F
6 nfcv 2339 . . . . . . . . . . 11  |-  F/_ x
( g `  m
)
75, 6nffv 5568 . . . . . . . . . 10  |-  F/_ x
( F `  (
g `  m )
)
87nfcri 2333 . . . . . . . . 9  |-  F/ x  y  e.  ( F `  ( g `  m
) )
94, 8nfan 1579 . . . . . . . 8  |-  F/ x
( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )
103, 9nfrexya 2538 . . . . . . 7  |-  F/ x E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )
11 nfv 1542 . . . . . . . 8  |-  F/ x dom  g  =  (/)
12 nffrec.2 . . . . . . . . 9  |-  F/_ x A
1312nfcri 2333 . . . . . . . 8  |-  F/ x  y  e.  A
1411, 13nfan 1579 . . . . . . 7  |-  F/ x
( dom  g  =  (/) 
/\  y  e.  A
)
1510, 14nfor 1588 . . . . . 6  |-  F/ x
( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )
1615nfab 2344 . . . . 5  |-  F/_ x { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }
172, 16nfmpt 4125 . . . 4  |-  F/_ x
( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1817nfrecs 6365 . . 3  |-  F/_ xrecs ( ( g  e. 
_V  |->  { y  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )
1918, 3nfres 4948 . 2  |-  F/_ x
(recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
201, 19nfcxfr 2336 1  |-  F/_ xfrec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   {cab 2182   F/_wnfc 2326   E.wrex 2476   _Vcvv 2763   (/)c0 3450    |-> cmpt 4094   suc csuc 4400   omcom 4626   dom cdm 4663    |` cres 4665   ` cfv 5258  recscrecs 6362  freccfrec 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-res 4675  df-iota 5219  df-fv 5266  df-recs 6363  df-frec 6449
This theorem is referenced by:  nfseq  10549
  Copyright terms: Public domain W3C validator