ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec Unicode version

Theorem nffrec 6505
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1  |-  F/_ x F
nffrec.2  |-  F/_ x A
Assertion
Ref Expression
nffrec  |-  F/_ xfrec ( F ,  A )

Proof of Theorem nffrec
Dummy variables  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6500 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
2 nfcv 2350 . . . . 5  |-  F/_ x _V
3 nfcv 2350 . . . . . . . 8  |-  F/_ x om
4 nfv 1552 . . . . . . . . 9  |-  F/ x dom  g  =  suc  m
5 nffrec.1 . . . . . . . . . . 11  |-  F/_ x F
6 nfcv 2350 . . . . . . . . . . 11  |-  F/_ x
( g `  m
)
75, 6nffv 5609 . . . . . . . . . 10  |-  F/_ x
( F `  (
g `  m )
)
87nfcri 2344 . . . . . . . . 9  |-  F/ x  y  e.  ( F `  ( g `  m
) )
94, 8nfan 1589 . . . . . . . 8  |-  F/ x
( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )
103, 9nfrexya 2549 . . . . . . 7  |-  F/ x E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )
11 nfv 1552 . . . . . . . 8  |-  F/ x dom  g  =  (/)
12 nffrec.2 . . . . . . . . 9  |-  F/_ x A
1312nfcri 2344 . . . . . . . 8  |-  F/ x  y  e.  A
1411, 13nfan 1589 . . . . . . 7  |-  F/ x
( dom  g  =  (/) 
/\  y  e.  A
)
1510, 14nfor 1598 . . . . . 6  |-  F/ x
( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )
1615nfab 2355 . . . . 5  |-  F/_ x { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }
172, 16nfmpt 4152 . . . 4  |-  F/_ x
( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1817nfrecs 6416 . . 3  |-  F/_ xrecs ( ( g  e. 
_V  |->  { y  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )
1918, 3nfres 4980 . 2  |-  F/_ x
(recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
201, 19nfcxfr 2347 1  |-  F/_ xfrec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193   F/_wnfc 2337   E.wrex 2487   _Vcvv 2776   (/)c0 3468    |-> cmpt 4121   suc csuc 4430   omcom 4656   dom cdm 4693    |` cres 4695   ` cfv 5290  recscrecs 6413  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-res 4705  df-iota 5251  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  nfseq  10639
  Copyright terms: Public domain W3C validator