Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffrec | Unicode version |
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
nffrec.1 | |
nffrec.2 |
Ref | Expression |
---|---|
nffrec | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frec 6382 | . 2 frec recs | |
2 | nfcv 2317 | . . . . 5 | |
3 | nfcv 2317 | . . . . . . . 8 | |
4 | nfv 1526 | . . . . . . . . 9 | |
5 | nffrec.1 | . . . . . . . . . . 11 | |
6 | nfcv 2317 | . . . . . . . . . . 11 | |
7 | 5, 6 | nffv 5517 | . . . . . . . . . 10 |
8 | 7 | nfcri 2311 | . . . . . . . . 9 |
9 | 4, 8 | nfan 1563 | . . . . . . . 8 |
10 | 3, 9 | nfrexya 2516 | . . . . . . 7 |
11 | nfv 1526 | . . . . . . . 8 | |
12 | nffrec.2 | . . . . . . . . 9 | |
13 | 12 | nfcri 2311 | . . . . . . . 8 |
14 | 11, 13 | nfan 1563 | . . . . . . 7 |
15 | 10, 14 | nfor 1572 | . . . . . 6 |
16 | 15 | nfab 2322 | . . . . 5 |
17 | 2, 16 | nfmpt 4090 | . . . 4 |
18 | 17 | nfrecs 6298 | . . 3 recs |
19 | 18, 3 | nfres 4902 | . 2 recs |
20 | 1, 19 | nfcxfr 2314 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wa 104 wo 708 wceq 1353 wcel 2146 cab 2161 wnfc 2304 wrex 2454 cvv 2735 c0 3420 cmpt 4059 csuc 4359 com 4583 cdm 4620 cres 4622 cfv 5208 recscrecs 6295 freccfrec 6381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-xp 4626 df-res 4632 df-iota 5170 df-fv 5216 df-recs 6296 df-frec 6382 |
This theorem is referenced by: nfseq 10423 |
Copyright terms: Public domain | W3C validator |