ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq1 Unicode version

Theorem freceq1 6459
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq1  |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A
) )

Proof of Theorem freceq1
Dummy variables  x  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . . . . 11  |-  ( ( F  =  G  /\  g  e.  _V )  ->  F  =  G )
21fveq1d 5563 . . . . . . . . . 10  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( F `  (
g `  m )
)  =  ( G `
 ( g `  m ) ) )
32eleq2d 2266 . . . . . . . . 9  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( x  e.  ( F `  ( g `
 m ) )  <-> 
x  e.  ( G `
 ( g `  m ) ) ) )
43anbi2d 464 . . . . . . . 8  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `  m
) ) ) ) )
54rexbidv 2498 . . . . . . 7  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) ) ) )
65orbi1d 792 . . . . . 6  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) ) )
76abbidv 2314 . . . . 5  |-  ( ( F  =  G  /\  g  e.  _V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87mpteq2dva 4124 . . . 4  |-  ( F  =  G  ->  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
9 recseq 6373 . . . 4  |-  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  -> recs ( (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
108, 9syl 14 . . 3  |-  ( F  =  G  -> recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
1110reseq1d 4946 . 2  |-  ( F  =  G  ->  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
12 df-frec 6458 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
13 df-frec 6458 . 2  |- frec ( G ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
1411, 12, 133eqtr4g 2254 1  |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   (/)c0 3451    |-> cmpt 4095   suc csuc 4401   omcom 4627   dom cdm 4664    |` cres 4666   ` cfv 5259  recscrecs 6371  freccfrec 6457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-res 4676  df-iota 5220  df-fv 5267  df-recs 6372  df-frec 6458
This theorem is referenced by:  frecuzrdgdom  10527  frecuzrdgfun  10529  frecuzrdgsuct  10533  seqeq1  10559  seqeq2  10560  seqeq3  10561  iseqvalcbv  10568  hashfz1  10892  ennnfonelemr  12665  ctinfom  12670  isomninn  15762  iswomninn  15781  ismkvnn  15784
  Copyright terms: Public domain W3C validator