| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > freceq1 | Unicode version | ||
| Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) | 
| Ref | Expression | 
|---|---|
| freceq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 2 | 1 | fveq1d 5560 | 
. . . . . . . . . 10
 | 
| 3 | 2 | eleq2d 2266 | 
. . . . . . . . 9
 | 
| 4 | 3 | anbi2d 464 | 
. . . . . . . 8
 | 
| 5 | 4 | rexbidv 2498 | 
. . . . . . 7
 | 
| 6 | 5 | orbi1d 792 | 
. . . . . 6
 | 
| 7 | 6 | abbidv 2314 | 
. . . . 5
 | 
| 8 | 7 | mpteq2dva 4123 | 
. . . 4
 | 
| 9 | recseq 6364 | 
. . . 4
 | |
| 10 | 8, 9 | syl 14 | 
. . 3
 | 
| 11 | 10 | reseq1d 4945 | 
. 2
 | 
| 12 | df-frec 6449 | 
. 2
 | |
| 13 | df-frec 6449 | 
. 2
 | |
| 14 | 11, 12, 13 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-res 4675 df-iota 5219 df-fv 5266 df-recs 6363 df-frec 6449 | 
| This theorem is referenced by: frecuzrdgdom 10510 frecuzrdgfun 10512 frecuzrdgsuct 10516 seqeq1 10542 seqeq2 10543 seqeq3 10544 iseqvalcbv 10551 hashfz1 10875 ennnfonelemr 12640 ctinfom 12645 isomninn 15675 iswomninn 15694 ismkvnn 15697 | 
| Copyright terms: Public domain | W3C validator |