| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freceq1 | Unicode version | ||
| Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| freceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . . . . 11
| |
| 2 | 1 | fveq1d 5629 |
. . . . . . . . . 10
|
| 3 | 2 | eleq2d 2299 |
. . . . . . . . 9
|
| 4 | 3 | anbi2d 464 |
. . . . . . . 8
|
| 5 | 4 | rexbidv 2531 |
. . . . . . 7
|
| 6 | 5 | orbi1d 796 |
. . . . . 6
|
| 7 | 6 | abbidv 2347 |
. . . . 5
|
| 8 | 7 | mpteq2dva 4174 |
. . . 4
|
| 9 | recseq 6452 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 10 | reseq1d 5004 |
. 2
|
| 12 | df-frec 6537 |
. 2
| |
| 13 | df-frec 6537 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-res 4731 df-iota 5278 df-fv 5326 df-recs 6451 df-frec 6537 |
| This theorem is referenced by: frecuzrdgdom 10640 frecuzrdgfun 10642 frecuzrdgsuct 10646 seqeq1 10672 seqeq2 10673 seqeq3 10674 iseqvalcbv 10681 hashfz1 11005 ennnfonelemr 12994 ctinfom 12999 isomninn 16399 iswomninn 16418 ismkvnn 16421 |
| Copyright terms: Public domain | W3C validator |