ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq1 Unicode version

Theorem freceq1 6501
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq1  |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A
) )

Proof of Theorem freceq1
Dummy variables  x  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . . . . 11  |-  ( ( F  =  G  /\  g  e.  _V )  ->  F  =  G )
21fveq1d 5601 . . . . . . . . . 10  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( F `  (
g `  m )
)  =  ( G `
 ( g `  m ) ) )
32eleq2d 2277 . . . . . . . . 9  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( x  e.  ( F `  ( g `
 m ) )  <-> 
x  e.  ( G `
 ( g `  m ) ) ) )
43anbi2d 464 . . . . . . . 8  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `  m
) ) ) ) )
54rexbidv 2509 . . . . . . 7  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) ) ) )
65orbi1d 793 . . . . . 6  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) ) )
76abbidv 2325 . . . . 5  |-  ( ( F  =  G  /\  g  e.  _V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87mpteq2dva 4150 . . . 4  |-  ( F  =  G  ->  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
9 recseq 6415 . . . 4  |-  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  -> recs ( (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
108, 9syl 14 . . 3  |-  ( F  =  G  -> recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
1110reseq1d 4977 . 2  |-  ( F  =  G  ->  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
12 df-frec 6500 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
13 df-frec 6500 . 2  |- frec ( G ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
1411, 12, 133eqtr4g 2265 1  |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776   (/)c0 3468    |-> cmpt 4121   suc csuc 4430   omcom 4656   dom cdm 4693    |` cres 4695   ` cfv 5290  recscrecs 6413  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-res 4705  df-iota 5251  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  frecuzrdgdom  10600  frecuzrdgfun  10602  frecuzrdgsuct  10606  seqeq1  10632  seqeq2  10633  seqeq3  10634  iseqvalcbv  10641  hashfz1  10965  ennnfonelemr  12909  ctinfom  12914  isomninn  16172  iswomninn  16191  ismkvnn  16194
  Copyright terms: Public domain W3C validator