| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freceq1 | Unicode version | ||
| Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| freceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . . . . 11
| |
| 2 | 1 | fveq1d 5563 |
. . . . . . . . . 10
|
| 3 | 2 | eleq2d 2266 |
. . . . . . . . 9
|
| 4 | 3 | anbi2d 464 |
. . . . . . . 8
|
| 5 | 4 | rexbidv 2498 |
. . . . . . 7
|
| 6 | 5 | orbi1d 792 |
. . . . . 6
|
| 7 | 6 | abbidv 2314 |
. . . . 5
|
| 8 | 7 | mpteq2dva 4124 |
. . . 4
|
| 9 | recseq 6373 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 10 | reseq1d 4946 |
. 2
|
| 12 | df-frec 6458 |
. 2
| |
| 13 | df-frec 6458 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-res 4676 df-iota 5220 df-fv 5267 df-recs 6372 df-frec 6458 |
| This theorem is referenced by: frecuzrdgdom 10527 frecuzrdgfun 10529 frecuzrdgsuct 10533 seqeq1 10559 seqeq2 10560 seqeq3 10561 iseqvalcbv 10568 hashfz1 10892 ennnfonelemr 12665 ctinfom 12670 isomninn 15762 iswomninn 15781 ismkvnn 15784 |
| Copyright terms: Public domain | W3C validator |