| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freceq1 | Unicode version | ||
| Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| freceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . . . . 11
| |
| 2 | 1 | fveq1d 5580 |
. . . . . . . . . 10
|
| 3 | 2 | eleq2d 2275 |
. . . . . . . . 9
|
| 4 | 3 | anbi2d 464 |
. . . . . . . 8
|
| 5 | 4 | rexbidv 2507 |
. . . . . . 7
|
| 6 | 5 | orbi1d 793 |
. . . . . 6
|
| 7 | 6 | abbidv 2323 |
. . . . 5
|
| 8 | 7 | mpteq2dva 4135 |
. . . 4
|
| 9 | recseq 6394 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 10 | reseq1d 4959 |
. 2
|
| 12 | df-frec 6479 |
. 2
| |
| 13 | df-frec 6479 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-res 4688 df-iota 5233 df-fv 5280 df-recs 6393 df-frec 6479 |
| This theorem is referenced by: frecuzrdgdom 10565 frecuzrdgfun 10567 frecuzrdgsuct 10571 seqeq1 10597 seqeq2 10598 seqeq3 10599 iseqvalcbv 10606 hashfz1 10930 ennnfonelemr 12827 ctinfom 12832 isomninn 16007 iswomninn 16026 ismkvnn 16029 |
| Copyright terms: Public domain | W3C validator |