ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq1 Unicode version

Theorem freceq1 6360
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq1  |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A
) )

Proof of Theorem freceq1
Dummy variables  x  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . . . . . 11  |-  ( ( F  =  G  /\  g  e.  _V )  ->  F  =  G )
21fveq1d 5488 . . . . . . . . . 10  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( F `  (
g `  m )
)  =  ( G `
 ( g `  m ) ) )
32eleq2d 2236 . . . . . . . . 9  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( x  e.  ( F `  ( g `
 m ) )  <-> 
x  e.  ( G `
 ( g `  m ) ) ) )
43anbi2d 460 . . . . . . . 8  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `  m
) ) ) ) )
54rexbidv 2467 . . . . . . 7  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) ) ) )
65orbi1d 781 . . . . . 6  |-  ( ( F  =  G  /\  g  e.  _V )  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) ) )
76abbidv 2284 . . . . 5  |-  ( ( F  =  G  /\  g  e.  _V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87mpteq2dva 4072 . . . 4  |-  ( F  =  G  ->  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
9 recseq 6274 . . . 4  |-  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  -> recs ( (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
108, 9syl 14 . . 3  |-  ( F  =  G  -> recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) )
1110reseq1d 4883 . 2  |-  ( F  =  G  ->  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
)
12 df-frec 6359 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
13 df-frec 6359 . 2  |- frec ( G ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( G `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
1411, 12, 133eqtr4g 2224 1  |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726   (/)c0 3409    |-> cmpt 4043   suc csuc 4343   omcom 4567   dom cdm 4604    |` cres 4606   ` cfv 5188  recscrecs 6272  freccfrec 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-res 4616  df-iota 5153  df-fv 5196  df-recs 6273  df-frec 6359
This theorem is referenced by:  frecuzrdgdom  10353  frecuzrdgfun  10355  frecuzrdgsuct  10359  seqeq1  10383  seqeq2  10384  seqeq3  10385  iseqvalcbv  10392  hashfz1  10696  ennnfonelemr  12356  ctinfom  12361  isomninn  13910  iswomninn  13929  ismkvnn  13932
  Copyright terms: Public domain W3C validator