ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7122
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9243 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6434) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7121 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1352 . . . . . . 7  class  i
43csuc 4367 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1352 . . . . . 6  class  f
74, 6cfv 5218 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5218 . . . . 5  class  ( f `
 i )
97, 8wss 3131 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4591 . . . 4  class  om
119, 2, 10wral 2455 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6414 . . . 4  class  2o
13 cmap 6651 . . . 4  class  ^m
1412, 10, 13co 5878 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2459 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1353 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7123  nninff  7124  infnninf  7125  infnninfOLD  7126  nnnninf  7127  nnnninfeq  7129  nnnninfeq2  7130  nninfwlpoimlemg  7176  0nninf  14942  nnsf  14943  peano4nninf  14944  nninfalllem1  14946  nninfself  14951
  Copyright terms: Public domain W3C validator