ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7179
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9304 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6483) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7178 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1363 . . . . . . 7  class  i
43csuc 4396 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1363 . . . . . 6  class  f
74, 6cfv 5254 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5254 . . . . 5  class  ( f `
 i )
97, 8wss 3153 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4622 . . . 4  class  om
119, 2, 10wral 2472 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6463 . . . 4  class  2o
13 cmap 6702 . . . 4  class  ^m
1412, 10, 13co 5918 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2476 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1364 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7180  nninff  7181  nninfninc  7182  infnninf  7183  infnninfOLD  7184  nnnninf  7185  nnnninfeq  7187  nnnninfeq2  7188  nninfwlpoimlemg  7234  0nninf  15494  nnsf  15495  peano4nninf  15496  nninfalllem1  15498  nninfself  15503
  Copyright terms: Public domain W3C validator