ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7097
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9199 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6409) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7096 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1347 . . . . . . 7  class  i
43csuc 4350 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1347 . . . . . 6  class  f
74, 6cfv 5198 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5198 . . . . 5  class  ( f `
 i )
97, 8wss 3121 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4574 . . . 4  class  om
119, 2, 10wral 2448 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6389 . . . 4  class  2o
13 cmap 6626 . . . 4  class  ^m
1412, 10, 13co 5853 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2452 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1348 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7098  nninff  7099  infnninf  7100  infnninfOLD  7101  nnnninf  7102  nnnninfeq  7104  nnnninfeq2  7105  nninfwlpoimlemg  7151  0nninf  14037  nnsf  14038  peano4nninf  14039  nninfalllem1  14041  nninfself  14046
  Copyright terms: Public domain W3C validator