ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7181
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9307 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6485) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7180 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1363 . . . . . . 7  class  i
43csuc 4397 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1363 . . . . . 6  class  f
74, 6cfv 5255 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5255 . . . . 5  class  ( f `
 i )
97, 8wss 3154 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4623 . . . 4  class  om
119, 2, 10wral 2472 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6465 . . . 4  class  2o
13 cmap 6704 . . . 4  class  ^m
1412, 10, 13co 5919 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2476 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1364 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7182  nninff  7183  nninfninc  7184  infnninf  7185  infnninfOLD  7186  nnnninf  7187  nnnninfeq  7189  nnnninfeq2  7190  nninfwlpoimlemg  7236  0nninf  15564  nnsf  15565  peano4nninf  15566  nninfalllem1  15568  nninfself  15573
  Copyright terms: Public domain W3C validator