ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7236
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9374 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6528) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7235 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1372 . . . . . . 7  class  i
43csuc 4419 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1372 . . . . . 6  class  f
74, 6cfv 5279 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5279 . . . . 5  class  ( f `
 i )
97, 8wss 3170 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4645 . . . 4  class  om
119, 2, 10wral 2485 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6508 . . . 4  class  2o
13 cmap 6747 . . . 4  class  ^m
1412, 10, 13co 5956 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2489 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1373 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7237  nninff  7238  nninfninc  7239  infnninf  7240  infnninfOLD  7241  nnnninf  7242  nnnninfeq  7244  nnnninfeq2  7245  nninfwlpoimlemg  7291  0nninf  16076  nnsf  16077  peano4nninf  16078  nninfalllem1  16080  nninfself  16085
  Copyright terms: Public domain W3C validator