ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7085
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9178 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6398) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7084 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1342 . . . . . . 7  class  i
43csuc 4343 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1342 . . . . . 6  class  f
74, 6cfv 5188 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5188 . . . . 5  class  ( f `
 i )
97, 8wss 3116 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4567 . . . 4  class  om
119, 2, 10wral 2444 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6378 . . . 4  class  2o
13 cmap 6614 . . . 4  class  ^m
1412, 10, 13co 5842 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2448 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1343 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7086  nninff  7087  infnninf  7088  infnninfOLD  7089  nnnninf  7090  nnnninfeq  7092  nnnninfeq2  7093  0nninf  13884  nnsf  13885  peano4nninf  13886  nninfalllem1  13888  nninfself  13893
  Copyright terms: Public domain W3C validator