ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7118
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9239 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6430) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7117 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1352 . . . . . . 7  class  i
43csuc 4365 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1352 . . . . . 6  class  f
74, 6cfv 5216 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5216 . . . . 5  class  ( f `
 i )
97, 8wss 3129 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4589 . . . 4  class  om
119, 2, 10wral 2455 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6410 . . . 4  class  2o
13 cmap 6647 . . . 4  class  ^m
1412, 10, 13co 5874 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2459 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1353 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7119  nninff  7120  infnninf  7121  infnninfOLD  7122  nnnninf  7123  nnnninfeq  7125  nnnninfeq2  7126  nninfwlpoimlemg  7172  0nninf  14723  nnsf  14724  peano4nninf  14725  nninfalllem1  14727  nninfself  14732
  Copyright terms: Public domain W3C validator