ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7058
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9148 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6374) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7057 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1334 . . . . . . 7  class  i
43csuc 4325 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1334 . . . . . 6  class  f
74, 6cfv 5169 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5169 . . . . 5  class  ( f `
 i )
97, 8wss 3102 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4548 . . . 4  class  om
119, 2, 10wral 2435 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6354 . . . 4  class  2o
13 cmap 6590 . . . 4  class  ^m
1412, 10, 13co 5821 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2439 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1335 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7059  nninff  7060  infnninf  7061  infnninfOLD  7062  nnnninf  7063  nnnninfeq  7065  nnnninfeq2  7066  0nninf  13547  nnsf  13548  peano4nninf  13549  nninfalllem1  13551  nninfself  13556
  Copyright terms: Public domain W3C validator