ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7283
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9429 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6574) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7282 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1394 . . . . . . 7  class  i
43csuc 4455 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1394 . . . . . 6  class  f
74, 6cfv 5317 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5317 . . . . 5  class  ( f `
 i )
97, 8wss 3197 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4681 . . . 4  class  om
119, 2, 10wral 2508 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6554 . . . 4  class  2o
13 cmap 6793 . . . 4  class  ^m
1412, 10, 13co 6000 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2512 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1395 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7284  nninff  7285  nninfninc  7286  infnninf  7287  infnninfOLD  7288  nnnninf  7289  nnnninfeq  7291  nnnninfeq2  7292  nninfwlpoimlemg  7338  0nninf  16329  nnsf  16330  peano4nninf  16331  nninfalllem1  16333  nninfself  16338
  Copyright terms: Public domain W3C validator