ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7186
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9313 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6488) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7185 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1363 . . . . . . 7  class  i
43csuc 4400 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1363 . . . . . 6  class  f
74, 6cfv 5258 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5258 . . . . 5  class  ( f `
 i )
97, 8wss 3157 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4626 . . . 4  class  om
119, 2, 10wral 2475 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6468 . . . 4  class  2o
13 cmap 6707 . . . 4  class  ^m
1412, 10, 13co 5922 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2479 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1364 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7187  nninff  7188  nninfninc  7189  infnninf  7190  infnninfOLD  7191  nnnninf  7192  nnnninfeq  7194  nnnninfeq2  7195  nninfwlpoimlemg  7241  0nninf  15648  nnsf  15649  peano4nninf  15650  nninfalllem1  15652  nninfself  15657
  Copyright terms: Public domain W3C validator