ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf Unicode version

Definition df-nninf 7195
Description: Define the set of nonincreasing sequences in  2o  ^m  om. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as NN0* as defined at df-xnn0 9330 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used  om or  NN0, but the former allows us to take advantage of  2o  =  { (/)
,  1o } (df2o3 6497) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Distinct variable group:    f, i

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7194 . 2  class
2 vi . . . . . . . 8  setvar  i
32cv 1363 . . . . . . 7  class  i
43csuc 4401 . . . . . 6  class  suc  i
5 vf . . . . . . 7  setvar  f
65cv 1363 . . . . . 6  class  f
74, 6cfv 5259 . . . . 5  class  ( f `
 suc  i )
83, 6cfv 5259 . . . . 5  class  ( f `
 i )
97, 8wss 3157 . . . 4  wff  ( f `
 suc  i )  C_  ( f `  i
)
10 com 4627 . . . 4  class  om
119, 2, 10wral 2475 . . 3  wff  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )
12 c2o 6477 . . . 4  class  2o
13 cmap 6716 . . . 4  class  ^m
1412, 10, 13co 5925 . . 3  class  ( 2o 
^m  om )
1511, 5, 14crab 2479 . 2  class  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
161, 15wceq 1364 1  wff  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
Colors of variables: wff set class
This definition is referenced by:  nninfex  7196  nninff  7197  nninfninc  7198  infnninf  7199  infnninfOLD  7200  nnnninf  7201  nnnninfeq  7203  nnnninfeq2  7204  nninfwlpoimlemg  7250  0nninf  15735  nnsf  15736  peano4nninf  15737  nninfalllem1  15739  nninfself  15744
  Copyright terms: Public domain W3C validator