Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf Unicode version

Theorem 0nninf 13372
Description: The zero element of ℕ (the constant sequence equal to  (/)). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf  |-  ( om 
X.  { (/) } )  e.

Proof of Theorem 0nninf
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6346 . . . 4  |-  (/)  e.  2o
21fconst6 5330 . . 3  |-  ( om 
X.  { (/) } ) : om --> 2o
3 2onn 6425 . . . . 5  |-  2o  e.  om
43elexi 2701 . . . 4  |-  2o  e.  _V
5 omex 4515 . . . 4  |-  om  e.  _V
64, 5elmap 6579 . . 3  |-  ( ( om  X.  { (/) } )  e.  ( 2o 
^m  om )  <->  ( om  X.  { (/) } ) : om --> 2o )
72, 6mpbir 145 . 2  |-  ( om 
X.  { (/) } )  e.  ( 2o  ^m  om )
8 peano2 4517 . . . . . 6  |-  ( i  e.  om  ->  suc  i  e.  om )
9 0ex 4063 . . . . . . 7  |-  (/)  e.  _V
109fvconst2 5644 . . . . . 6  |-  ( suc  i  e.  om  ->  ( ( om  X.  { (/)
} ) `  suc  i )  =  (/) )
118, 10syl 14 . . . . 5  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  suc  i )  =  (/) )
129fvconst2 5644 . . . . 5  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  i
)  =  (/) )
1311, 12eqtr4d 2176 . . . 4  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  suc  i )  =  ( ( om  X.  { (/)
} ) `  i
) )
14 eqimss 3156 . . . 4  |-  ( ( ( om  X.  { (/)
} ) `  suc  i )  =  ( ( om  X.  { (/)
} ) `  i
)  ->  ( ( om  X.  { (/) } ) `
 suc  i )  C_  ( ( om  X.  { (/) } ) `  i ) )
1513, 14syl 14 . . 3  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  suc  i )  C_  (
( om  X.  { (/)
} ) `  i
) )
1615rgen 2488 . 2  |-  A. i  e.  om  ( ( om 
X.  { (/) } ) `
 suc  i )  C_  ( ( om  X.  { (/) } ) `  i )
17 fveq1 5428 . . . . 5  |-  ( f  =  ( om  X.  { (/) } )  -> 
( f `  suc  i )  =  ( ( om  X.  { (/)
} ) `  suc  i ) )
18 fveq1 5428 . . . . 5  |-  ( f  =  ( om  X.  { (/) } )  -> 
( f `  i
)  =  ( ( om  X.  { (/) } ) `  i ) )
1917, 18sseq12d 3133 . . . 4  |-  ( f  =  ( om  X.  { (/) } )  -> 
( ( f `  suc  i )  C_  (
f `  i )  <->  ( ( om  X.  { (/)
} ) `  suc  i )  C_  (
( om  X.  { (/)
} ) `  i
) ) )
2019ralbidv 2438 . . 3  |-  ( f  =  ( om  X.  { (/) } )  -> 
( A. i  e. 
om  ( f `  suc  i )  C_  (
f `  i )  <->  A. i  e.  om  (
( om  X.  { (/)
} ) `  suc  i )  C_  (
( om  X.  { (/)
} ) `  i
) ) )
21 df-nninf 7015 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
2220, 21elrab2 2847 . 2  |-  ( ( om  X.  { (/) } )  e.  <-> 
( ( om  X.  { (/) } )  e.  ( 2o  ^m  om )  /\  A. i  e. 
om  ( ( om 
X.  { (/) } ) `
 suc  i )  C_  ( ( om  X.  { (/) } ) `  i ) ) )
237, 16, 22mpbir2an 927 1  |-  ( om 
X.  { (/) } )  e.
Colors of variables: wff set class
Syntax hints:    = wceq 1332    e. wcel 1481   A.wral 2417    C_ wss 3076   (/)c0 3368   {csn 3532   suc csuc 4295   omcom 4512    X. cxp 4545   -->wf 5127   ` cfv 5131  (class class class)co 5782   2oc2o 6315    ^m cmap 6550  ℕxnninf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015
This theorem is referenced by:  exmidsbthrlem  13392
  Copyright terms: Public domain W3C validator