Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 0nninf | Unicode version |
Description: The zero element of ℕ∞ (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.) |
Ref | Expression |
---|---|
0nninf | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6378 | . . . 4 | |
2 | 1 | fconst6 5362 | . . 3 |
3 | 2onn 6457 | . . . . 5 | |
4 | 3 | elexi 2721 | . . . 4 |
5 | omex 4546 | . . . 4 | |
6 | 4, 5 | elmap 6611 | . . 3 |
7 | 2, 6 | mpbir 145 | . 2 |
8 | peano2 4548 | . . . . . 6 | |
9 | 0ex 4087 | . . . . . . 7 | |
10 | 9 | fvconst2 5676 | . . . . . 6 |
11 | 8, 10 | syl 14 | . . . . 5 |
12 | 9 | fvconst2 5676 | . . . . 5 |
13 | 11, 12 | eqtr4d 2190 | . . . 4 |
14 | eqimss 3178 | . . . 4 | |
15 | 13, 14 | syl 14 | . . 3 |
16 | 15 | rgen 2507 | . 2 |
17 | fveq1 5460 | . . . . 5 | |
18 | fveq1 5460 | . . . . 5 | |
19 | 17, 18 | sseq12d 3155 | . . . 4 |
20 | 19 | ralbidv 2454 | . . 3 |
21 | df-nninf 7050 | . . 3 ℕ∞ | |
22 | 20, 21 | elrab2 2867 | . 2 ℕ∞ |
23 | 7, 16, 22 | mpbir2an 927 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wcel 2125 wral 2432 wss 3098 c0 3390 csn 3556 csuc 4320 com 4543 cxp 4577 wf 5159 cfv 5163 (class class class)co 5814 c2o 6347 cmap 6582 ℕ∞xnninf 7049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1o 6353 df-2o 6354 df-map 6584 df-nninf 7050 |
This theorem is referenced by: exmidsbthrlem 13542 |
Copyright terms: Public domain | W3C validator |