Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf Unicode version

Theorem 0nninf 16113
Description: The zero element of ℕ (the constant sequence equal to  (/)). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf  |-  ( om 
X.  { (/) } )  e.

Proof of Theorem 0nninf
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6545 . . . 4  |-  (/)  e.  2o
21fconst6 5492 . . 3  |-  ( om 
X.  { (/) } ) : om --> 2o
3 2onn 6625 . . . . 5  |-  2o  e.  om
43elexi 2786 . . . 4  |-  2o  e.  _V
5 omex 4654 . . . 4  |-  om  e.  _V
64, 5elmap 6782 . . 3  |-  ( ( om  X.  { (/) } )  e.  ( 2o 
^m  om )  <->  ( om  X.  { (/) } ) : om --> 2o )
72, 6mpbir 146 . 2  |-  ( om 
X.  { (/) } )  e.  ( 2o  ^m  om )
8 peano2 4656 . . . . . 6  |-  ( i  e.  om  ->  suc  i  e.  om )
9 0ex 4182 . . . . . . 7  |-  (/)  e.  _V
109fvconst2 5818 . . . . . 6  |-  ( suc  i  e.  om  ->  ( ( om  X.  { (/)
} ) `  suc  i )  =  (/) )
118, 10syl 14 . . . . 5  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  suc  i )  =  (/) )
129fvconst2 5818 . . . . 5  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  i
)  =  (/) )
1311, 12eqtr4d 2242 . . . 4  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  suc  i )  =  ( ( om  X.  { (/)
} ) `  i
) )
14 eqimss 3251 . . . 4  |-  ( ( ( om  X.  { (/)
} ) `  suc  i )  =  ( ( om  X.  { (/)
} ) `  i
)  ->  ( ( om  X.  { (/) } ) `
 suc  i )  C_  ( ( om  X.  { (/) } ) `  i ) )
1513, 14syl 14 . . 3  |-  ( i  e.  om  ->  (
( om  X.  { (/)
} ) `  suc  i )  C_  (
( om  X.  { (/)
} ) `  i
) )
1615rgen 2560 . 2  |-  A. i  e.  om  ( ( om 
X.  { (/) } ) `
 suc  i )  C_  ( ( om  X.  { (/) } ) `  i )
17 fveq1 5593 . . . . 5  |-  ( f  =  ( om  X.  { (/) } )  -> 
( f `  suc  i )  =  ( ( om  X.  { (/)
} ) `  suc  i ) )
18 fveq1 5593 . . . . 5  |-  ( f  =  ( om  X.  { (/) } )  -> 
( f `  i
)  =  ( ( om  X.  { (/) } ) `  i ) )
1917, 18sseq12d 3228 . . . 4  |-  ( f  =  ( om  X.  { (/) } )  -> 
( ( f `  suc  i )  C_  (
f `  i )  <->  ( ( om  X.  { (/)
} ) `  suc  i )  C_  (
( om  X.  { (/)
} ) `  i
) ) )
2019ralbidv 2507 . . 3  |-  ( f  =  ( om  X.  { (/) } )  -> 
( A. i  e. 
om  ( f `  suc  i )  C_  (
f `  i )  <->  A. i  e.  om  (
( om  X.  { (/)
} ) `  suc  i )  C_  (
( om  X.  { (/)
} ) `  i
) ) )
21 df-nninf 7243 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
2220, 21elrab2 2936 . 2  |-  ( ( om  X.  { (/) } )  e.  <-> 
( ( om  X.  { (/) } )  e.  ( 2o  ^m  om )  /\  A. i  e. 
om  ( ( om 
X.  { (/) } ) `
 suc  i )  C_  ( ( om  X.  { (/) } ) `  i ) ) )
237, 16, 22mpbir2an 945 1  |-  ( om 
X.  { (/) } )  e.
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   A.wral 2485    C_ wss 3170   (/)c0 3464   {csn 3638   suc csuc 4425   omcom 4651    X. cxp 4686   -->wf 5281   ` cfv 5285  (class class class)co 5962   2oc2o 6514    ^m cmap 6753  ℕxnninf 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1o 6520  df-2o 6521  df-map 6755  df-nninf 7243
This theorem is referenced by:  exmidsbthrlem  16133
  Copyright terms: Public domain W3C validator